

TWAIN Specification
Version 1.9a

This document has been
ratified by the TWAIN Working
Group Committee as of January 20, 2001

Acknowledgments
The TWAIN Working Group acknowledges the following individuals and their respective
companies for their contributions to this document. Their hard work in defining, designing,
editing, proofreading, and discussing the evolution of the document have been invaluable.

Eastman Kodak
Mark McLaughlin
Senior Software Engineer

Hewlett-Packard
Chuck Mayne
Software Development Engineer

JFL Peripheral Solutions Inc.
Jon Harju
Director of Engineering

Critical Path Software
Dave Camp
Software Engineer

Xerox Corporation
Dan Young
Technical Specialist, Program Manager

Adobe Systems
Michael O'Rourke
Senior Computer Scientist

Digimarc
Burt Perry
Vice President of Engineering

We would also like to thank the TWAIN Working Group Technical Committee for their
opinions and contributions

 MLM\KB\100198 - 2001 - 0120

TWAIN 1.9a Specification 1-1

1
Introduction

Chapter Contents
The Need for Consistency 1
The Elements of TWAIN 2
The Benefits of Using TWAIN 3
The Creation of TWAIN 4

The Need for Consistency
With the introduction of scanners, digital cameras, and other image acquisition devices, users
eagerly discovered the value of incorporating images into their documents and other work.
However, supporting the display and manipulation of this raster data placed a high cost on
application developers. They needed to create user interfaces and build in device control for
the wide assortment of available image devices. Once their application was prepared to
support a given device, they faced the discouraging reality that devices continue to be
upgraded with new capabilities and features. Application developers found themselves
continually revising their product to stay current.

Developers of both the image acquisition devices and the software applications recognized the
need for a standard communication between the image devices and the applications. A
standard would benefit both groups as well as the users of their products. It would allow the
device vendors’ products to be accessed by more applications and application vendors could
access data from those devices without concern for which type of device, or particular device,
provided it. TWAIN was developed because of this need for consistency and simplification.

Chapter 1

1-2 TWAIN 1.9a Specification

The Elements of TWAIN
TWAIN defines a standard software protocol and API (application programming interface) for
communication between software applications and image acquisition devices (the source of the
data).

The three key elements in TWAIN are:

• The application software - An application must be modified to use TWAIN.

• The Source Manager software - This software manages the interactions between the
application and the Source. This code is provided in the TWAIN Developer’s Toolkit
and should be shipped for free with each TWAIN application and Source.

• The Source software - This software controls the image acquisition device and is written
by the device developer to comply with TWAIN specifications. Traditional device
drivers are now included with the Source software and do not need to be shipped by
applications.

Image
Application

Data Source
Manager

Fax
Application

Word Processor
Application

Digital Camera
Data Source

Scanner
Data Source

Image Database
Data Source

Producers of
Image Data

Consumers of
Image Data

HW Dependant I/O Layer
(SCSI, Parallel, Serial, etc.)

Source Manager
Software

Data Source
Software

Application
Software

TWAIN
Interfaces

Figure 1-1. TWAIN Elements

 Introduction

TWAIN 1.9a Specification 1-3

The Benefits of Using TWAIN
For the Application Developer

• Allows you to offer users of your application a simple way to incorporate images from
any compatible raster device without leaving your application.

• Saves time and dollars. If you currently provide low-level device drivers for scanners,
etc., you no longer need to write, support, or ship these drivers. The TWAIN-compliant
image acquisition devices will provide Source software modules that eliminate the need
for you to create and ship device drivers.

• Permits your application to access data from any TWAIN-compliant image peripheral
simply by modifying your application code once using the high-level TWAIN
application programming interface. No customization by product is necessary. TWAIN
image peripherals can include desktop scanners, hand scanners, digital cameras, frame
grabbers, image databases, or any other raster image source that complies to the TWAIN
protocol and API .

• Allows you to determine the features and capabilities that an image acquisition device
can provide. Your application can then restrict the Source to offer only those capabilities
that are compatible with your application’s needs and abilities.

• Eliminates the need for your application to provide a user interface to control the image
acquisition process. There is a software user interface module shipped with every
TWAIN-compliant Source device to handle that process. Of course, you may provide
your own user interface for acquisition, if desired.

For the Source Developer

• Increases the use and support of your product. More applications will become image
consumers as a result of the ease of implementation and breadth of device integration
that TWAIN provides.

• Allows you to provide a proprietary user interface for your device. This lets you present
the newest features to the user without waiting for the applications to incorporate them
into their interfaces.

• Saves money by reducing your implementation costs. Rather than create and support
various versions of your device control software to integrate with various applications,
you create just a single TWAIN-compliant Source.

For the End User

• Gives users a simple way to incorporate images into their documents. They can access
the image in fewer steps because they never need to leave your application.

Note: As of this writing TWAIN is supported on the following operating systems: all versions of
Apple Macintosh, Microsoft Windows 3.x / 9x / NT and Windows 2000. TWAIN is not
available on Windows CE. TWAIN is available on IBM OS/2, but the binaries for the Source
Manager were not built or distributed by the TWAIN Working Group.

Chapter 1

1-4 TWAIN 1.9a Specification

The Creation of TWAIN
TWAIN was created by a small group of software and hardware companies in response to the
need for a proposed specification for the imaging industry. The Working Group’s goal was to
provide an open, multi-platform solution to interconnect the needs of raster input devices with
application software. The original Working Group was comprised of representatives from five
companies: Aldus, Caere, Eastman Kodak, Hewlett-Packard, and Logitech. Three other
companies, Adobe, Howtek, and Software Architects also contributed significantly.

The design of TWAIN began in January, 1991. Review of the original TWAIN Developer’s
Toolkit occurred from April, 1991 through January, 1992. The original Toolkit was reviewed by
the TWAIN Coalition. The Coalition includes approximately 300 individuals representing 200
companies who continue to influence and guide the future direction of TWAIN.

The current version of TWAIN was written by the current 11 members of the TWAIN Working
Group. The members include: Adobe, Canon, Eastman Kodak Company, Fujitsu Computer
Products of America, Genoa Technology, Inc., Hewlett-Packard Company, Intel Corporation,
J.F.L. Peripherals, Kofax Image Products, Ricoh Corporation, and Xerox.

In May, 1998, an agreement was announced between Microsoft and the TWAIN Working
Group which provided for the inclusion of the TWAIN Data Source Manager in Microsoft
Windows 98 and Microsoft Windows NT 5.0.

During the creation of TWAIN, the following architecture objectives were adhered to:

• Ease of Adoption - Allow an application vendor to make their application TWAIN-
compliant with a reasonable amount of development and testing effort. The basic
features of TWAIN should be implemented just by making modest changes to the
application. To take advantage of a more complete set of functionality and control
capabilities, more development effort should be anticipated.

• Extensibility - The architecture must include the flexibility to embrace multiple
windowing environments spanning various host platforms (Macintosh, Microsoft
Windows, Motif, etc.) and facilitate the exchange of various data types between Source
devices and destination applications. Currently, only the raster image data type is
supported but suggestions for future extensions include text, facsimile, vector graphics,
and others.

• Integration - Key elements of the TWAIN implementation “belong” in the operating
system. The agreement between Microsoft and the TWAIN Working Group indicates
that this integration into the operating system is beginning. TWAIN must be
implemented to encourage backward compatibility (extensibility) and smooth migration
into the operating system. An implementation that minimizes the use of platform-
specific mechanisms will have enhanced longevity and adoptability.

• Easy Application <-> Source Interconnect - A straight-forward Source identification
and selection mechanism will be supplied. The application will drive this mechanism
through a simple API. This mechanism will also establish the data and control links
between the application and Source. It will support capability and configuration
communication and negotiation between the application and Source.

• Encapsulated Human Interface - A device-native user interface will be required in each
Source. The application can optionally override this native user interface while still
using the Source to control the physical device.

TWAIN 1.9a Specification 2-5

2
Technical Overview

The TWAIN protocol and API are easiest to understand when you see the overall picture. This
chapter describes:

Chapter Contents
The TWAIN Architecture 5
The User Interface to TWAIN 8
Communication Between
 the Elements of TWAIN 9
The Use of Operation Triplets 13
The State-Based Protocol 14
Capabilities 17
Modes Available for Data Transfer 22

The TWAIN Architecture
The transfer of data is made possible by three software elements that work together in TWAIN:
the application, the Source Manager, and the Source.

These elements use the architecture of TWAIN to communicate. The TWAIN architecture
consists of four layers:

• Application
• Protocol
• Acquisition
• Device

Chapter 2

2-6 TWAIN 1.9a Specification

The TWAIN software elements occupy the layers as illustrated below. Each layer is described
in the sections that follow.

Figure 2-1. TWAIN Software Elements

Application

The user’s software application executes in this layer.

TWAIN describes user interface guidelines for the application developer regarding how users
access TWAIN functionality and how a particular Source is selected.

TWAIN is not concerned with how the application is implemented. TWAIN has no effect on
any inter-application communication scheme that the application may use.

Protocol

The protocol is the “language” spoken and syntax used by TWAIN. It implements precise
instructions and communications required for the transfer of data.

The protocol layer includes:

• The portion of application software that provides the interface between the application
and TWAIN

• The TWAIN Source Manager provided by TWAIN

• The software included with the Source device to receive instructions from the Source
Manager and transfer back data and Return Codes

The contents of the protocol layer are discussed in more detail in a following section called
“Communication between the Elements of TWAIN.”

 Technical Overview

TWAIN 1.9a Specification 2-7

Acquisition

Acquisition devices may be physical (like a scanner or digital camera) or logical (like an image
database). The software elements written to control acquisitions are called Sources and reside
primarily in this layer.

The Source transfers data for the application. It uses the format and transfer mechanism agreed
upon by the Source and application.

The Source always provides a built-in user interface that controls the device(s) the Source was
written to drive. An application can override this and present its own user interface for
acquisition, if desired.

Device

This is the location of traditional low-level device drivers. They convert device-specific
commands into hardware commands and actions specific to the particular device the driver
was written to accompany. Applications that use TWAIN no longer need to ship device drivers
because they are part of the Source.

TWAIN is not concerned with the device layer at all. The Source hides the device layer from
the application. The Source provides the translation from TWAIN operations and interactions
with the Source’s user interface into the equivalent commands for the device driver that cause
the device to behave as desired.

Note: The Protocol layer is the most thoroughly and rigidly defined to allow precise
communications between applications and Sources. The information in this document
concentrates on the Protocol and Acquisition layers.

Chapter 2

2-8 TWAIN 1.9a Specification

The User Interface to TWAIN
When an application uses TWAIN to acquire data, the acquisition process may be visible to the
application’s users in the following three areas:

Figure 2-2. Data Acquisition Process

The Application

The user needs to select the device from which they intend to acquire the data. They also need
to signal when they are ready to have the data transferred. To allow this, TWAIN strongly
recommends the application developer add two options to their File menu:

• Select Source - to select the device
• Acquire - to begin the transfer process

The Source Manager

When the user chooses the Select Source option, the application requests that the Source
Manager display its Select Source dialog box. This lists all available devices and allows the
user to highlight and select one device. If desired, the application can write its own version of
this user interface.

The Source

Every TWAIN-compliant Source provides a user interface specific to its particular device.
When the application user selects the Acquire option, the Source’s User Interface may be
displayed. If desired, the application can write its own version of this interface, too.

 Technical Overview

TWAIN 1.9a Specification 2-9

Communication Between the Elements of TWAIN
Communication between elements of TWAIN is possible through two entry points. They are
called DSM_Entry() and DS_Entry(). DSM means Data Source Manager and DS means Data
Source.

Figure 2-3. Entry Points for Communicating Between Elements

The Application

The goal of the application is to acquire data from a Source. However, applications cannot
contact the Source directly. All requests for data, capability information, error information, etc.
must be handled through the Source Manager.

Approximately 140 operations are defined by TWAIN. The application sends them to the
Source Manager for transmission. The application specifies which element, Source Manager or
Source, is the final destination for each requested operation.

The application communicates to the Source Manager through the Source Manager’s only entry
point, the DSM_Entry() function.

Chapter 2

2-10 TWAIN 1.9a Specification

The parameter list of the DSM_Entry function contains:

• An identifier structure providing information about the application that originated the
function call

• The destination of this request (Source Manager or Source)

• A triplet that describes the requested operation. The triplet specifies:
! Data Group for the Operation (DG_)
! Data Argument Type for the Operation (DAT_)
! Message for the Operation (MSG_)

 (These are described more in the section called “The Use of Operation Triplets” located
later in this chapter.)

• A pointer field to allow the transfer of data

The function call returns a value (the Return Code) indicating the success or failure of the
operation.

Written in C code form, the function call looks like this:

On Windows
TW_UINT16 FAR PASCAL DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

On Macintosh
FAR PASCAL TW_UINT16 DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

Note: Data type definitions are covered in Chapter 8 of this document and in the file called
TWAIN.H which is shipped on the developer’s disk. (It can also be downloaded from
the TWAIN Working Group Web site.)

 Technical Overview

TWAIN 1.9a Specification 2-11

The Source Manager

The Source Manager provides the communication path between the application and the Source,
supports the user’s selection of a Source, and loads the Source for access by the application.
Communications from application to Source Manager arrive in the DSM_Entry() entry point.

• If the destination in the DSM_Entry call is the Source Manager - The Source Manager
processes the operation itself.

• If the destination in the DSM_Entry call is the Source - The Source Manager translates
the parameter list of information, removes the destination parameter and calls the
appropriate Source. To reach the Source, the Source Manager calls the Source’s
DS_Entry() function. TWAIN requires each Source to have this entry point.

Written in C code form, the DS_Entry function call looks like this:

On Windows
TW_UINT16 FAR PASCAL DS_Entry

(pTW_IDENTITY pOrigin, // source of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

On Macintosh
FAR PASCAL TW_UINT16 DS_Entry

(pTW_IDENTITY pOrigin, // source of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

In addition, the Source Manager can initiate three operations that were not originated by the
application. These operation triplets exist just for Source Manager to Source communications
and are executed by the Source Manager while it is displaying its Select Source dialog box. The
operations are used to identify the available Sources and to open or close Sources.

The implementation of the Source Manager differs between the supported systems:

On Windows
The Source Manager for Windows is a Dynamic Link Library (DLL).
The Source Manager can manage simultaneous sessions between many applications with
many Sources. That is, the same instance of the Source Manager is shared by multiple
applications.

On Macintosh
The Source Manager for Macintosh is a PowerPC Shared Library.

Chapter 2

2-12 TWAIN 1.9a Specification

The Source

The Source receives operations either from the application, via the Source Manager, or directly
from the Source Manager. It processes the request and returns the appropriate Return Code
(the codes are prefixed with TWRC_) indicating the results of the operation to the Source
Manager. If the originator of the operation was the application, then the Return Code is passed
back to the application as the return value of its DSM_Entry() function call. If the operation
was unsuccessful, a Condition Code (the codes are prefixed with TWCC_) containing more
specific information is set by the Source. Although the Condition Code is set, it is not
automatically passed back. The application must invoke an operation to inquire about the
contents of the Condition Code.

The implementation of the Source is the same as the implementation of the Source Manager:

On Windows
The Source is a Dynamic Link Library (DLL) so applications share the same copy of each
element.

On Macintosh
The Source is implemented as a PowerPC Shared Library.

Communication Flowing from Source to Application

The majority of operation requests are initiated by the application and flow to the Source
Manager and Source. The Source, via the Source Manager, is able to pass back data and Return
Codes.

However, there are four times when the Source needs to interrupt the application and request
that an action occur. These situations are:

• Notify the application that a data transfer is ready to occur. The time required for a
Source to prepare data for a transfer will vary. Rather than have the application wait for
the preparation to be complete, the Source just notifies it when everything is ready. The
MSG_XFERREADY notice is used for this purpose.

• Request that the Source’s user interface be disabled. This notification should be sent
by the Source to the application when the user clicks on the “Close” button of the
Source’s user interface. The MSG_CLOSEDSREQ notice is used for this purpose.

• Notify the application that the OK button has been pressed, accepting the changes the
user has made. This is only used if the Source is opened with DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDSUIONLY. The MSG_CLOSEDSOK notice is
used for this purpose.

• A Device Event has occurred. This notification is sent by the Source to the Application
when a specific event has occurred, but only if the Application gave the Source prior
instructions to pass along such events. The MSG_DEVICEEVENT notice is used for this
purpose.

These notices are presented to the application in its event (or message) loop. The process used
for these notifications is covered more fully in Chapter 3 in the discussion of the application’s
event loop.

 Technical Overview

TWAIN 1.9a Specification 2-13

The Use of Operation Triplets
The DSM_Entry() and DS_Entry() functions are used to communicate operations. An
operation is an action that the application or Source Manager invokes. Typically, but not
always, it involves using data or modifying data that is indicated by the last parameter (pData)
in the function call.

Requests for actions occur in one of these ways:
From To Using this function

The application The Source Manager DSM_Entry with the pDest parameter set
to NULL

The application The Source (via the
Source Manager)

DSM_Entry with the pDest parameter set
to point to a valid structure that identifies
the Source

The Source Manager The Source DS_Entry

The desired action is defined by an operation triplet passed as three parameters in the function
call. Each triplet uniquely, and without ambiguity, specifies a particular action. No operation
is specified by more than a single triplet. The three parameters that make up the triplet are
Data Group, Data Argument Type, and Message ID. Each parameter conveys specific
information.

Data Group (DG_xxxx)
Operations are divided into large categories by the Data Group identifier. There are
currently only two defined in TWAIN:

• CONTROL (The identifier is DG_CONTROL.): These operations involve control of
the TWAIN session. An example where DG_CONTROL is used as the Data Group
identifier is the operation to open the Source Manager.

• IMAGE (The identifier is DG_IMAGE.): These operations work with image data.
An example where DG_IMAGE is used as a Data Group is an operation that requests
the transfer of image data.

• AUDIO (The identifier is DG_AUDIO): These operations work with audio data
(supported by some digital cameras). An example where DG_AUDIO is used as a
Data Group is an operation that requests the transfer of audio data.

Data Argument Type (DAT_xxxx)
This parameter of the triplet identifies the type of data that is being passed or operated
upon. The argument type may reference a data structure or a variable. There are many
data argument types. One example is DAT_IDENTITY.
The DAT_IDENTITY type is used to identify a TWAIN element such as a Source.
Remember, from the earlier code example, data is typically passed or modified through the
pData parameter of the DSM_Entry and DS_Entry. In this case, the pData parameter
would point to a data structure of type TW_IDENTITY. Notice that the data argument type
begins with DAT_xxxx and the associated data structure begins with TW_xxxx and
duplicates the second part of the name. This pattern is followed consistently for most data
argument types and their data structures. Any exceptions are noted on the reference pages
in Chapters 7 and 8.

Chapter 2

2-14 TWAIN 1.9a Specification

Message ID (MSG_xxxx)
This parameter identifies the action that the application or Source Manager wishes to have
taken. There are many different messages such as MSG_GET or MSG_SET. They all begin
with the prefix of MSG_.

Here are three examples of operation triplets:

The triplet the application sends to the Source Manager to open the Source Manager
module is:
DG_CONTROL / DAT_PARENT / MSG_OPENDSM

The triplet that the application sends to instruct the Source Manager to display its Select
Source dialog box and thus allow the user to select which Source they plan to obtain data
from is:
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

The triplet the application sends to transfer data from the Source into a file is:
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

The State-Based Protocol
The application, Source Manager, and Source must communicate to manage the acquisition of
data. It is logical that this process must occur in a particular sequence. For example, the
application cannot successfully request the transfer of data from a Source before the Source
Manager is loaded and prepared to communicate the request.

To ensure the sequence is executed correctly, the TWAIN protocol defines seven states that
exist in TWAIN sessions. A session is the period while an application is connected to a
particular Source via the Source Manager. The period while the application is connected to the
Source Manager is another unique session. At a given point in a session, the TWAIN elements
of Source Manager and Source each occupy a particular state. Transitions to a new state are
caused by operations requested by the application or Source. Transitions can be in the forward
or backward direction. Most transitions are single-state transitions. For example, an operation
moves the Source Manager from State 1 to State 2 not from State 1 to State 3. (There are
situations where a two-state transition may occur. They are discussed in Chapter 3.)

When viewing the state-based protocol, it is helpful to remember:

States 1, 2, and 3
• Are occupied only by the Source Manager.
• The Source Manager never occupies a state greater than State 3.

States 4, 5, 6, and 7
• Are occupied exclusively by Sources.
• A Source never has a state less than 4 if it is open. If it is closed, it has no state.
• If an application uses multiple Sources, each connection is a separate session and

each open Source “resides” in its own state without regard for what state the other
Sources are in.

 Technical Overview

TWAIN 1.9a Specification 2-15

The State Transition Diagram looks like this:

1
Pre-Session

Source Manager not
loaded

2
Source Manager

Loaded
App: Get Entry Point

3
Source Manager

Opened
User: Select Source

App: Load
Source Manager

App: Open
Source Manager

App: Unload Source
Manager

App: Close Source
Manager

App: Open Source

Source: Transition
when no more image
transfers are pending

Source: Notify App
to Disable Source.
App: Disable Source

App: Initiate
transfer

Source: Notify App
that transfer is ready

User: Acquire
App: Enable Source

App: Acknowledge
end of transfer

4
Source Open

Capability Negotiation

5
Source Enabled
Source: Show User

Interface

6
Transfer Ready
App: Inquire Image

Information or Audio
Information

7
Transferring

Source: Transfer Data

App: Close Source

Source Manager States Source States

Figure 2-4. State Transition Diagram

Chapter 2

2-16 TWAIN 1.9a Specification

The Description of the States

The following sections describe the states.

State 1 - Pre-Session
The Source Manager “resides” in State 1 before the application establishes a session with it.
At this point, the Source Manager code has been installed on the disk but typically is not
loaded into memory yet.
The only case where the Source Manager could already be loaded and running is under
Windows because the implementation is a DLL (hence, the same instance of the Source
Manager can be shared by multiple applications). If that situation exists, the Source
Manager will be in State 2 or 3 with the application that loaded it.

State 2 - Source Manager Loaded
The Source Manager now is loaded into memory. It is not open yet.
At this time, the Source Manager is prepared to accept other operation triplets from the
application.

State 3 - Source Manager Open
The Source Manager is open and ready to manage Sources.
The Source Manager is now prepared to provide lists of Sources, to open Sources, and to
close Sources.
The Source Manager will remain in State 3 for the remainder of the session until it is closed.
The Source Manager refuses to be closed while the application has any Sources open.

State 4 - Source Open
The Source has been loaded and opened by the Source Manager in response to an operation
from the application. It is ready to receive operations.
The Source should have verified that sufficient resources (i.e. memory, device is available,
etc.) exist for it to run.
The application can inquire about the Source’s capabilities (i.e. levels of resolution, support
of color or black and white images, automatic document feeder available, etc.). The
application can also set those capabilities to its desired settings. For example, it may
restrict a Source capable of providing color images to transferring black and white only.

Note: Inquiry about a capability can occur while the Source is in States 4, 5, 6, or 7. But,
an application can set a capability only in State 4 unless special permission is
negotiated between the application and Source.

State 5 - Source Enabled
The Source has been enabled by an operation from the application via the Source Manager
and is ready for user-enabled transfers.
If the application has allowed the Source to display its user interface, the Source will do
that when it enters State 5.

 Technical Overview

TWAIN 1.9a Specification 2-17

State 6 - Transfer is Ready
The Source is ready to transfer one or more data items (images) to the application.
The transition from State 5 to 6 is triggered by the Source notifying the application that the
transfer is ready.
Before initiating the transfer, the application must inquire information about the image
(resolution, image size, etc.). If the Source supports audio, then before transferring the
image, the Application must transfer all the audio snippets that are associated with the
image.
It is possible for more than one image to be transferred in succession. This topic is covered
thoroughly in Chapter 4.

State 7 - Transferring
The Source is transferring the image to the application.
The transfer mechanism being used was negotiated during State 4.
The transfer will either complete successfully or terminate prematurely. The Source sends
the appropriate Return Code indicating the outcome.
Once the Source indicates that the transfer is complete, the application must acknowledge
the end of the transfer.

Capabilities
One of TWAIN’s benefits is it allows applications to easily interact with a variety of acquisition
devices. Devices can provide image or audio data. For instance,

• Some devices have automatic document feeders.
• Some devices are not limited to one image but can transfer multiple images.
• Some devices support color images.
• Some devices offer a variety of halftone patterns.
• Some devices support a range of resolutions while others may offer different choices.
• Some devices allow the recording of audio data associated with an image.

Developers of applications need to be aware of a Source’s capabilities and may influence the
capabilities that the Source offers to the application’s users. To do this, the application can
perform capability negotiation. The application generally follows this process:

1. Determine if the selected Source supports a particular capability.
2. Inquire about the Current Value for this capability. Also, inquire about the capability’s

Default Value and the set of Available Values that are supported by the Source for that
capability.

3. Request that the Source set the Current Value to the application’s desired value. The
Current Value will be displayed as the current selection in the Source’s user interface.

4. Limit, if needed, the Source’s Available Values to a subset of what would normally be
offered. For instance, if the application wants only black and white data, it can restrict
the Source to transmit only that. If a limitation effects the Source’s user interface, the
Source should modify the interface to reflect those changes. For example, it may gray
out options that are not available because of the application’s restrictions.

5. Verify that the new values have been accepted by the Source.

Chapter 2

2-18 TWAIN 1.9a Specification

TWAIN capabilities are divided into three groups:

• CAP_xxxx: Capabilities whose names begin with CAP are capabilities that could apply
to any general Source. Such capabilities include use of automatic document feeders,
identification of the creator of the data, etc.

• ICAP_xxxx: Capabilities whose names begin with ICAP are capabilities that apply to
image devices. The “I” stands for image. (When TWAIN is expanded to support other
data transfer such as text or fax data, there will be TCAPs and FCAPs in a similar style.)

• ACAP_xxxx: Capabilities whose names begin with ACAP are capabilities that apply to
devices that support audio. The “A” stands for audio.

Capability Containers

Capabilities exist in many varieties but all have a Default Value, Current Value, and may have
other values available that can be supported if selected. To help categorize the supported
values into clear structures, TWAIN defines four types of containers for capabilities.

Name of the Data
Structure for the Container

Type of Contents

TW_ONEVALUE A single value whose current and default values are
coincident. The range of available values for this type of
capability is simply this single value. For example, a
capability that indicates the presence of a document
feeder could be of this type.

TW_ARRAY A rectangular array of values that describe a logical
item. It is similar to the TW_ONEVALUE because the
current and default values are the same and there are
no other values to select from. For example, a list of the
names, such as the supported capabilities list returned
by the CAP_SUPPORTEDCAPS capability, would use
this type of container.

TW_RANGE Many capabilities allow users to select their current
value from a range of regularly spaced values. The
capability can specify the minimum and maximum
acceptable values and the incremental step size between
values. For example, resolution might be supported
from 100 to 600 in steps of 50 (100, 150, 200, ..., 550,
600).

TW_ENUMERATION This is the most general type because it defines a list of
values from which the Current Value can be chosen.
The values do not progress uniformly through a range
and there is not a consistent step size between the
values. For example, if a Source’s resolution options
did not occur in even step sizes then an enumeration
would be used (for example, 150, 400, and 600).

 Technical Overview

TWAIN 1.9a Specification 2-19

In general, most capabilities can have more than one of these containers applied to them
depending on how the particular Source implements the capability. The data structure for each
of these containers is defined in Chapter 8. A complete table with all defined capabilities is
located in Chapter 9. A few of the capabilities must be supported by the application and
Source. The remainder of the capabilities are optional.

Capability Negotiation and Container Types

It is very important for Application and Data Source developers to note that Container types
are dictated by the Data Source in all cases where a value is queried. Also the allowable
container types of each capability are clearly defined in Chapter 9 of the TWAIN Specification.
The only time it is appropriate for the calling Application to specify a container type is during
the MSG_SET operation. At that time, the Application must also consider the allowable
containers and types for the particular capability.

Capability Containers and String Values

The only containers that can possibly hold a string are the following:

TW_ENUMERATION
TW_ARRAY
TW_ONEVALUE

It is not possible or useful to use this type in a TW_RANGE. in fact there is no case where a
capability has been defined in Chapter 9 of the TWAIN Specification where a TW_RANGE is
allowed for a TW_STRxxxx type of value.

There are four types of TWAIN strings defined for developer use:

TW_STR32
TW_STR64
TW_STR128
TW_STR256

As of version 1.7, only the following capabilities accept strings:

CAP_AUTHOR, TW_ONEVALUE, TW_STR128
CAP_CAPTION, TW_ONEVALUE, TW_STR255
CAP_TIMEDATE, TW_ONEVALUE, TW_STR32
ICAP_HALFTONES, TW_ONEVALUE/TW_ENUMERATION/TW_ARRAY, TW_STR32

The definition of the various container types could be confusing. For example, the definition of
a TW_ONEVALUE is as follows:

/* TWON_ONEVALUE. Container for one value. */
typedef struct {

TW_UINT16 ItemType;
TW_UINT32 Item;

} TW_ONEVALUE, FAR * pTW_ONEVALUE;

At first glance, it is tempting to try placing the string into this container by assigning “Item” to
be a pointer. This is not at all consistent with the implementation of other structures in the
specification and introduces a host of problems concerning management of the memory
occupied by the string. (See TW_IDENTITY for consistent TWAIN string use)

Chapter 2

2-20 TWAIN 1.9a Specification

The correct and consistent method of holding a string in a TWAIN container is to ensure the
string is embedded in the container itself. Either a new structure is defined within the
developers code, or the added size is considered when allocating the container.

The following examples are designed to demonstrate possible methods of using TWAIN Strings
in Containers. These examples are suitable for demonstration only, and require refinement to
be put to real use.

Example 1:
TW_ONEVALUE structure defined for holding a TW_STR32 value

/* TWON_ONEVALUESTR32. Container for one value holding TW_STR32. */
typedef struct {

TW_UINT16 ItemType;
TW_STR32 Item;

} TW_ONEVALUESTR32, FAR * pTW_ONEVALUESTR32;

Note: Pay attention to two-byte structure packing when defining custom container
structures.

This clearly demonstrates where the memory is allocated and where the string resides. The
data source does not have to be concerned with how the string is managed locally, and the
application does not have to be concerned with managing the string memory or contents.

Example 2:
TW_ONEVALUE structure allocated and filled with consideration of holding a TW_STR32
value (Windows Example)

HGLOBAL AllocateAndFillOneValueStr32(const pTW_STR32 pInString)
{

DWORD dwContainerSize = 0l;
HGLOBAL hContainer = NULL;
pTW_ONEVALUE pOneValue = NULL;
pTW_STR32 pString = NULL;

assert(pInString);

// Note: This calculation will yield a size approximately one
// pointer larger than that required for this container
// (sizeof(TW_UINT32)). For simplicity the size difference
// is negligible. The first TW_STR32 item shall be located
// immediately after the pEnum->DefaultIndex member.

dwContainerSize = sizeof(TW_ONEVALUE) + sizeof(TW_STR32);
hContainer = GlobalAlloc(GPTR, dwContainerSize);
if(hContainer)

{
pOneValue = (pTW_ONEVALUE)GlobalLock(hContainer);
if(pOneValue)
{

pOneValue->ItemType = TWTY_STR32;
pString = (pTW_STR32)&pOneValue->Item;

memcpy(pString, pInString, sizeof(TW_STR32));

GlobalUnlock(hContainer);
pOneValue = NULL;
pString = NULL;

 Technical Overview

TWAIN 1.9a Specification 2-21

}
}
return hContainer;

}

Example 3:
TW_ENUMERATION structure allocated with consideration of holding TW_STR32 values
(Windows Example)

HGLOBAL AllocateEnumerationStr32(TW_UINT32 unNumItems)
{

DWORD dwContainerSize = 0l;
HGLOBAL hContainer = NULL;
pTW_ENUMERATION pEnum = NULL;

// Note: This calculation will yield a size approximately
// one pointer larger than that required for this container
// (sizeof(pTW_UINT8)). For simplicity the size difference is
// negligible. The first TW_STR32 item shall be located
// immediately after the pEnum->DefaultIndex member.

dwContainerSize = sizeof(TW_ENUMERATION) + (sizeof(TW_STR32) *
unNumItems);

hContainer = GlobalAlloc(GPTR, dwContainerSize);
if(hContainer)
{

pEnum = (pTW_ENUMERATION) GlobalLock(hContainer);
if(pEnum)
{

pEnum->ItemType = TWTY_STR32;
pEnum->NumItems = unNumItems;

GlobalUnlock(hContainer);
pEnum = NULL;

}
}
return hContainer;

}

Example 4: Indexing a string from an Enumeration Container
pTW_STR128 IndexStr128FromEnumeration(pTW_ENUMERATION pEnum, TW_UINT32
unIndex)
{

BYTE *pBegin = (BYTE *)&pEnum->ItemList[0];
assert(pEnum->NumItems > unIndex);
assert(pEnum->ItemType == TWTY_STR128);

pBegin += (unIndex * sizeof(TW_STR128));
return (pTW_STR128)pBegin;

}

Chapter 2

2-22 TWAIN 1.9a Specification

Modes Available for Data Transfer
There are three different modes that can be used to transfer data from the Source to the
application: native, disk file, and buffered memory. (At this time, TWAIN support for audio
only allows native and disk file transfers.)

Native

Every Source must support this transfer mode. It is the default mode and is the easiest for an
application to implement. However, it is restrictive (i.e. limited to the DIB or PICT formats and
limited by available memory).

The format of the data is platform-specific:

• Windows: DIB (Device-Independent Bitmap)
• Macintosh: A handle to a Picture

The Source allocates a single block of memory and writes the image data into the block. It
passes a pointer to the application indicating the memory location. The application is
responsible for freeing the memory after the transfer.

Disk File

A Source is not required to support this transfer mode but it is recommended.

The application creates the file to be used in the transfer and ensures that it is accessible by the
Source for reading and writing.

A capability exists that allows the application to determine which file formats the Source
supports. The application can then specify the file format and file name to be used in the
transfer.

The disk file mode is ideal when transferring large images that might encounter memory
limitations with Native mode. Disk File mode is simpler to implement than the buffered mode
discussed next. However, Disk File mode is a bit slower than Buffered Memory mode and the
application must be able to manage the file after creation.

Buffered Memory

Every Source must support this transfer mode.

The transfer occurs through memory using one or more buffers. Memory for the buffers are
allocated and deallocated by the application.

The data is transferred as an unformatted bitmap. The application must use information
available during the transfer (TW_IMAGEINFO and TW_IMAGEMEMXFER) to learn about
each individual buffer and be able to correctly interpret the bitmap.

If using the Native or Disk File transfer modes, the transfer is completed in one action. With
the Buffered Memory mode, the application may need to loop repeatedly to obtain more than
one buffer of data.

Buffered Memory transfer offers the greatest flexibility, both in data capture and control.
However, it is the least simple to implement.

TWAIN 1.9a Specification 3-23

3
Application Implementation

This chapter provides the basic information needed to implement TWAIN at a minimum level.
In this chapter, you will find information on:

Chapter Contents
Levels of TWAIN Implementation 23
Installation of the Source Manager Software 24
Changes Needed to Prepare for a TWAIN Session 26
The DSM_Entry Call and Available Operation Triplets 31
Controlling a TWAIN session from your application 37
Error Handling 60
Requirements for an Application to be
 TWAIN-Compliant 62

Advanced topics are discussed in Chapter 4. They include how to take advantage of Sources
that offer automatic feeding of multiple images.

Levels of TWAIN Implementation
Application developers can choose to implement TWAIN features in their application along a
range of levels.

• At the minimum level: The application does not have to take advantage of capability
negotiation or transfer mode selection. Using TWAIN defaults, it can just acquire a
single image in the Native mode.

• At a greater level: The application can negotiate with the Source for desired capabilities
or image characteristics and specify the transfer arrangement. This gives the application
more control over the type of image it receives. To do this, developers should follow the
instructions provided in this chapter and use information from Chapter 4, as well.

• At the highest level: An application may choose to negotiate capabilities, select transfer
mode, and create/present its own user interfaces instead of using the built-in ones
provided with the Source Manager and Source. Again, refer to this chapter and
Chapter 4.

Chapter 3

3-24 TWAIN 1.9a Specification

Installation of the Source Manager Software
The TWAIN Source Manager for Microsoft Windows consists of four binaries that are owned
by the TWAIN Working Group (TWG). These binaries are built and distributed by the TWG
for Windows 3.x / 9x / NT, and built and distributed by Microsoft (as protected system files)
for all versions of Windows 2000. These files are as follows:

TWAIN_32.DLL The 32-bit Source Manager. This is the DLL that 32-bit
applications must use to communicate with TWAIN.

TWAIN.DLL The 16-bit Source Manager. This is the DLL that 16-bit
applications must use to communicate with TWAIN.

TWUNKER_32.EXE This program works invisibly under the hood to allow 16-bit
applications to communicate with 32-bit Sources.

TWUNKER_16.EXE This program works invisibly under the hood to allow 32-bit
applications to communicate with 16-bit Sources. Note that 16-bit
Sources will not run correctly on Windows NT systems.

For a TWAIN-compliant application or Source to work properly, a Source Manager must be
installed on the host system. To guarantee that a Source Manager is available, ship a copy of
the latest Source Manager on your product’s distribution disk and provide the user with an
installer or installation instructions as suggested below. To ensure that the most recent version
of the Source Manager is available to you and your user on their computer, you must do the
following:

1. Look for a Source Manager:
a. On Windows systems: Look for the file names TWAIN.DLL, TWAIN_32.DLL,

TWUNK_16.EXE, and TWUNK_32.EXE in the Windows directory (this is typically
C:\Windows on Windows 3.1/95/98, and C:\Winnt on Windows NT).

b. On Macintosh systems: Look for the file name “TWAIN Source Manager” in the
Extensions Folder in the active System Folder.

2. If no Source Manager is currently installed, install the Source Manager sent out with
your application.

3. If a Source Manager already exists, check the version of the installed Source Manager.
If the version provided with your application is more recent, rename the existing one as
follows and install the Source Manager you shipped. To rename the existing Source
Manager:
a. On Windows systems: Rename the four files to be TWAIN.BAK, TWAIN_32.BAK,

TWUNK_16.BAK, and TWUNK_32.BAK.
b. On Macintosh systems: Move the Source Manager to the Extensions (Disabled)

folder.

 Application Implementation

TWAIN 1.9a Specification 3-25

How to Install the Source Manager on Microsoft Windows Systems

To allow the comparison of Source Manager versions, the Microsoft Windows Source Manager
DLL has version information built into it which conforms to the Microsoft File Version
Stamping specification. Application developers are strongly encouraged to take advantage of
this in their installation programs. Microsoft provides the File Version Stamping Library,
VER.DLL, which should be used to install the Source Manager.

VER.DLL, VER.LIB and VER.H are included in this Toolkit; VER.DLL may be freely copied and
distributed with your installation program. Of course, your installation program will have to
link to this DLL to use it. Documentation on the File Version Stamping Library API can be
found on the Microsoft Windows SDK.

The following code fragment demonstrates how the VerInstallFile() function provided in
VER.DLL can be used to install the Source Manager into the user’s Windows directory.

Note that the following example assumes that your installation floppy disk is in the A: drive
and the Source Manager is in the root of the installation disk.

#include "windows.h"
#include "ver.h"
#include "stdio.h"

// Max file name length is based on 8 dot 3 file name convention.
#define MAXFNAMELEN 12
// Max path name length is based on GetWindowsDirectory()
// documentation.
#define MAXPATHLEN 144

VOID InstallWinSM (VOID)
{

DWORD dwInstallResult;
WORD wTmpFileLen = MAXPATHLEN;
WORD wLen;

char szSrcDir[MAXPATHLEN];
char szDstDir[MAXPATHLEN];
char szCurDir[MAXPATHLEN];
char szTmpFile[MAXPATHLEN];

wLen = GetWindowsDirectory(szDstDir, MAXPATHLEN);
if (!wLen || wLen>MAXPATHLEN)
{

return; // failure getting Windows dir
}

strcpy(szCurDir, szDstDir);
strcpy(szSrcDir, "a:\\");

dwInstallResult = VerInstallFile(VIFF_DONTDELETEOLD,
"TWAIN_32.DLL",
"TWAIN_32.DLL",
szSrcDir,
szDstDir,
szCurDir,
szTmpFile,
&wTmpFileLen);

Chapter 3

3-26 TWAIN 1.9a Specification

// If VerInstallFile() left a temporary copy of the new
// file in DstDir be sure to delete it. This happens
// when a more recent version is already installed.
if (dwInstallResult & VIF_TEMPFILE &&

((wTmpFileLen - MAXPATHLEN) > MAXFNAMELEN))
{

// when dst path is root it already ends in ‘\’
if (szDstDir[wLen-1] != '\\')
{

strcat(szDstDir, "\\");
}
strcat(szDstDir, szTmpFile);
remove(szDstDir);

}
}

You should enhance the above code so that it handles the other three files (TWAIN.DLL,
TWUNK_16.EXE, and TWUNK_32.EXE), as well as fixing it to handle low memory and other
error conditions, as indicated by the dwInstallResult return code. Also note that the above code
does not leave a backup copy of the user’s prior Source Manager on their disk, but you should
do this. Copy the older versions to TWAIN.BAK, TWAIN_32.BAK, TWUNK_16.BAK, and
TWUNK_32.BAK.

How to Install the Source Manager on Macintosh Systems

The file "TWAIN Source Manager" should be installed in the Extensions folder of the active
System Folder, if the version being installed is newer than the existing version, or there is no
previous version of this file.

The folder "TWAIN Data Sources" should be created in the Extensions folder if it does not exist.

If you are a scanner vendor, install your scanner data sources into the Extensions:TWAIN Data
Sources: folder you created.

The file "Source Manager" should be installed in the Preferences:TWAIN: folder if it does not
exist, or if its version number is higher than the existing file.

The last step is very important. The file you are installing is the 68k shim file that routes calls
made by older applications to the new DSM. Without this file, older applications will not be
able to use the TWAIN DSM properly.

Changes Needed to Prepare for a TWAIN Session
There are three areas of the application that must be changed before a TWAIN session can even
begin. The application developer must:

1. Alter the application’s user interface to add Select Source and Acquire menu choices

2. Include the file called TWAIN.H in your application

3. Alter the application’s event loop

 Application Implementation

TWAIN 1.9a Specification 3-27

Alter the Application’s User Interface to Add Select Source and Acquire Options

As mentioned in the Technical Overview chapter, the application should include two menu
items in its File menu: Select Source... and Acquire.... It is strongly recommended that you use
these phrases since this consistency will benefit all users.

Figure 3-1. User Interface for Selecting a Source and Acquiring Options

Note the following:

When this is selected: The application does this:
Select Source... The application requests that the Source Manager’s Select Source

Dialog Box appear (or it may display its own version). After the
user selects the Source they want to use, control returns to the
application.

Acquire... The application requests that the Source display its user
interface. (Again, the application can create its own version of a
user interface or display no user interface.)

Detailed information on the operations used by the application to successfully acquire data is
provided later in this chapter in the section called “Controlling a TWAIN Session from your
Application.”

Include the TWAIN.H File in Your Application

The TWAIN.H file that is shipped with this TWAIN Developer’s Toolkit contains all of the
critical definitions needed for writing a TWAIN-compliant application or Source. Be sure to
include it in your application’s code and print out a copy to refer to while reading this chapter.

The TWAIN.H file contains:

Category Prefix for each item
Data Groups DG_
Data Argument Types DAT_
Messages MSG_
Capabilities CAP_, ICAP_, or ACAP_
Return Codes TWRC_
Condition Codes TWCC_
Type Definitions TW_
Structure Definitions TW_
Entry points These are DSM_Entry and DS_Entry

In addition, there are many constants defined in TWAIN.H which are not listed here.

Chapter 3

3-28 TWAIN 1.9a Specification

Alter the Application’s Event Loop

Events include activities such as key clicks, mouse events, periodic events, accelerators, etc.
Every TWAIN-compliant application, whether on Macintosh or Windows, needs an event loop.
(On Windows, these actions are called messages but that can be confusing because TWAIN
uses the term messages to describe the third parameter of an operation triplet. Therefore, we
will refer to these key clicks, etc. as events in this section generically for both Windows and
Macintosh.)

During a TWAIN session, the application opens one or more Sources. However, even if several
Sources are open, the application should only have one Source enabled at any given time. That
is the Source from which the user is attempting to acquire data.

Altering the event loop serves three purposes:

• Passing events from the application to the Source so it can respond to them
• Notifying the application when the Source is ready to transfer data or have its user

interface disabled
• Notifying the application when a device event occurs.

Event Loop Modification - Events in State 4

Please note that with TWAIN 1.8 and the addition of the DG_CONTROL / DAT_NULL /
MSG_DEVICEEVENT message, it is possible to receive events after the Source has been opened
but before it has been enabled (State 4). However, these events will not be sent from the Source
to the Application unless the Application has negotiated for specific events using
CAP_DEVICEEVENTS. Events posted in this way must use the hWnd passed to them by the
DG_CONTROL / DAT_PARENT / MSG_OPENDS message. Sources are required to have all
device events turned off when they are opened to support backward compatibility with older
TWAIN applications.

Event Loop Modification - Passing events (The first purpose)

While a Source is enabled, all events are sent to the application’s event loop. Some of the
events may belong to the application but others belong to the enabled Source. To ensure that
the Source receives and processes its events, the following changes are required:

The application must send all events that it receives in its event loop to the Source as long as
the Source is enabled. The application uses:

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

The TW_EVENT data structure used looks like this:
typedef struct {

TW_MEMREF pEvent; /* Windows pMSG or MAC pEvent */
TW_UINT16 TWMessage; /* TW message from Source to */

/* the application */
} TW_EVENT, FAR *pTW_EVENT;

The pEvent field points to the EventRecord (Macintosh) or message structure (Windows).

 Application Implementation

TWAIN 1.9a Specification 3-29

The Source receives the event from the Source Manager and determines if the event belongs to
it.

• If it does, the Source processes the event. It then sets the Return Code to
TWRC_DSEVENT to indicate it was a Source event. In addition, it should set the
TWMessage field of the TW_EVENT structure to MSG_NULL.

• If it does not, the Source sets the Return Code to TWRC_NOTDSEVENT meaning it is
not a Source event. In addition, it should set the TWMessage field of the TW_EVENT
structure to MSG_NULL. The application receives this information from DSM_Entry
and should process the event in its event loop as normal.

On Macintosh only, the application must periodically send NULL events to the Source to allow
notifications from Source to application.

Event Loop Modification - Notifications from Source to application (The second and third
purpose)

When the Source has data ready for a data transfer or it wishes to request that its user interface
be disabled, it needs to communicate this information to the application asynchronously.

These notifications appear in the application’s event loop. They are contained in the
TW_EVENT.TWMessage field. The four notices of interest are:

• MSG_XFERREADY to indicate data is ready for transfer

• MSG_CLOSEDSREQ to request that the Source’s user interface be disabled

• MSG_CLOSEDSOK to request that the Source’s user interface be disabled (special case
for use with DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY).

• MSG_DEVICEEVENT to report that a device event has occurred.

Therefore, the application’s event loop must always check the TW_EVENT.TWMessage field
following a DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT call to determine if it is
the simple MSG_NULL or critical MSG_XFERREADY or MSG_CLOSEDSREQ. Information
about how the application should respond to these two special notices is detailed later in this
chapter in the “Controlling a TWAIN Session from your Application” section.

How to Modify the Event Loop for Microsoft Windows

This section illustrates typical modifications needed in an Microsoft Windows application to
support TWAIN-connected Sources.

TW_EVENT twEvent;
TW_INT16 rc;
while (GetMessage ((LPMSG) &msg, NULL, 0, 0)) {

rc = TWRC_NOTDSEVENT;
if Source is enabled {

twEvent.pEvent = (TW_MEMREF)&msg;
twEvent.TWMessage = MSG_NULL;
rc = (*pDSM_Entry) (pAppId,

pSourceId,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEMREF)&twEvent);

Chapter 3

3-30 TWAIN 1.9a Specification

// check for message from Source
switch (twEvent.TWMessage) {

case MSG_XFERREADY:
SetupAndTransferImage(NULL);
break;

case MSG_CLOSEDSREQ:
DisableAndCloseSource(NULL);
break;

case MSG_CLOSEDSOK:
DisableAndCloseSource(NULL);
GetCustomDsData();
break;

case MSG_NULL:
// no message returned from the source
break;

}
}
// Source didn’t process it, so we will
if (rc == TWRC_NOTDSEVENT) {
TranslateMessage((LPMSG) &msg);
DispatchMessage((LPMSG) &msg);
}

}

Note: Source writers are advised to keep stack space usage to a minimum. Application
writers should be also be aware that, in the Windows environment, sources run in
their calling application’s data space. They depend upon the application to reserve
enough stack space for the source to be able to perform its various functions. For this
reason, applications should define enough stack space in their linker DEF files for the
sources that they might use.

How to Modify the Event Loop for Macintosh

This section illustrates typical modifications needed in a Macintosh application to support
TWAIN-connected Sources.

TW_EVENT twEvent;
TW_INT16 rc;
EventRecord theEvent;
while (!Done){

If Source is Enabled{
//Send periodic NULL events to the Source
twEvent.pEvent = NULL;
twEvent.TWMessage = MSG_NULL;
rc = (*pDSM_Entry) (pAppID,

pSourceID,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEMREF)&twEvent);

//check for message from Source
switch (twEvent.TWMessage){

case MSG_XFERREADY:
SetupImage(NULL);
break;

 Application Implementation

TWAIN 1.9a Specification 3-31

case MSG_CLOSEDSREQ:
DisableSource(NULL);
break;

case MSG_CLOSEDSOK:
DisableAndCloseSource(NULL);
GetCustomDsData();
break;

case MSG_NULL:
//no message was returned from the Source
break;

}
}
if (GetNextEvent(everyEvent, &theEvent)){ //or WaitNextEvent()

If Source is Enabled{
twEvent.pEvent = &theEvent;
twEvent.TWMessage = MSG_NULL;
rc = (*pDSM_Entry) (pAppID,

pSourceID,
DG_CONTROL,
DAT_EVENT,
MSG_PROCESSEVENT,
(TW_MEMREF)&twEvent);

//check for message from Source
switch (twEvent.TWMessage){

case MSG_XFERREADY:
SetupImage(NULL);
break;

case MSG_CLOSEDSREQ:
DisableSource(NULL);
break;

case MSG_CLOSEDSOK:
DisableAndCloseSource(NULL);
GetCustomDsData();
break;

case MSG_NULL:
//no message was returned from the Source
break;

}

if (rc == TWRC_NOTDSEVENT)

Message=DealWithEvent(&theEvent);
}

} else
Message=DealWithEvent(&theEvent);

}

The DSM_Entry Call and Available Operation Triplets
As described in the Technical Overview chapter, all actions that the application invokes on the
Source Manager or Source are routed through the Source Manager. The application passes the
request for the action to the Source Manager via the DSM_Entry function call which contains an

Chapter 3

3-32 TWAIN 1.9a Specification

operation triplet describing the requested action. In code form, the DSM_Entry function looks
like this:

On Windows:
TW_UINT16 FAR PASCAL DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

On Macintosh:
FAR PASCAL TW_UINT16 DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

The DG, DAT, and MSG parameters contain the operation triplet. The parameters must follow
these rules:

pOrigin
References the application’s TW_IDENTITY structure. The contents of this structure must
not be changed by the application from the time the connection is made with the Source
Manager until it is closed.

pDest
Set to NULL if the operation’s final destination is the Source Manager.
Otherwise, set to point to a valid TW_IDENTITY structure for an open Source.

DG_xxxx
Data Group of the operation. Currently, only DG_CONTROL, DG_IMAGE, and
DG_AUDIO are defined. Custom Data Groups can be defined.

DAT_xxxx
Designator that uniquely identifies the type of data “object” (structure or variable)
referenced by pData.

MSG_xxxx
Message specifies the action to be taken.

pData
Refers to the TW_xxxx structure or variable that will be used during the operation. Its type
is specified by the DAT_xxxx. This parameter should always be typecast to TW_MEMREF
when it is being referenced.

 Application Implementation

TWAIN 1.9a Specification 3-33

Operation Triplets - Application to Source Manager

There are nine operation triplets that can be sent from the application to be consumed by the
Source Manager. They all use the DG_CONTROL data group and they use three different data
argument types: DAT_IDENTITY, DAT_PARENT, and DAT_STATUS. The following table
lists the data group, data argument type, and messages that make up each operation. The list is
in alphabetical order not the order in which they are typically called by an application. Details
about each operation are available in reference format in Chapter 7.

Control Operations from Application to Source Manager
DG_CONTROL / DAT_IDENTITY
MSG_CLOSEDS : Prepare specified Source for unloading
MSG_GETDEFAULT : Get identity information of the default Source
MSG_GETFIRST : Get identity information of the first available Source
MSG_GETNEXT : Get identity of the next available Source
MSG_OPENDS : Load and initialize the specified Source
MSG_USERSELECT : Present “Select Source” dialog

DG_CONTROL / DAT_PARENT
MSG_CLOSEDSM : Prepare Source Manager for unloading
MSG_OPENDSM : Initialize the Source Manager

DG_CONTROL / DAT_STATUS
MSG_GET : Return Source Manager’s current Condition Code

Operation Triplets - Application to Source

The next group of operations are sent to a specific Source by the application. These operations
are still passed via the Source Manager using the DSM_Entry call. The first set of triplets use
the DG_CONTROL identification for their data group. These are operations that could be
performed on any kind of TWAIN device. The second set of triplets use the DG_IMAGE
identification for their data group which indicates these operations are specific to image data.
Details about each operation are available in reference format in Chapter 7.

Control Operations from Application to Source
DG_CONTROL / DAT_CAPABILITY
MSG_GET : Return a Capability’s valid value(s) including current and default

values
MSG_GETCURRENT : Get a Capability’s current value
MSG_GETDEFAULT : Get a Capability’s preferred default value (Source specific)
MSG_RESET : Change a Capability’s current value to its TWAIN-defined default

(See Chapter 9)
MSG_SET : Change a Capability’s current and/or available value(s)

DG_CONTROL / DAT_DEVICEEVENT
MSG_GET : Get an event from the Source (issue this call only in response to a

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from the
Source)

Chapter 3

3-34 TWAIN 1.9a Specification

DG_CONTROL / DAT_EVENT
MSG_PROCESSEVENT : Pass an event to the Source from the application

DG_CONTROL / DAT_FILESYSTEM
MSG_AUTOMATICCAPTUREDIRECTORY : Select directory to receive automatically

captured images
MSG_CHANGEDIRECTORY : Change the current domain, host, directory, or device.
MSG_COPY : Copy files
MSG_CREATEDIRECTORY : Create a directory
MSG_DELETE : Delete a file or directory
MSG_FORMATMEDIA : Format a storage device
MSG_GETCLOSE : Close a context created by a call to MSG_GETFILEFIRST
MSG_GETFIRSTFILE : Get the first file in a directory
MSG_GETINFO : Get information about the current file context
MSG_RENAME : Rename a file

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU
MSG_PASSTHRU : Special command for the use by Source vendors when writing

diagnostic Applications

DG_CONTROL / DAT_PENDINGXFERS
MSG_ENDXFER : Application acknowledges or requests the end of data transfer
MSG_GET : Return the number of transfers the Source is ready to supply
MSG_RESET : Set the number of pending transfers to zero
MSG_STOPFEEDER : Stop ADF without ending session

DG_CONTROL / DAT_SETUPFILEXFER
MSG_GET : Return info about the file that the Source will write the acquired

data into
MSG_GETDEFAULT : Return the default file transfer information
MSG_RESET : Reset current file information to default values
MSG_SET : Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPFILEXFER2
MSG_GET : Return info about the file that the Source will write the acquired

data into
MSG_GETDEFAULT : Return the default file transfer information
MSG_RESET : Reset current file information to default values
MSG_SET : Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPMEMXFER
MSG_GET : Return Source’s preferred, minimum, and maximum transfer

buffer sizes

DG_CONTROL / DAT_STATUS
MSG_GET : Return the current Condition Code from specified Source

 Application Implementation

TWAIN 1.9a Specification 3-35

DG_CONTROL / DAT_USERINTERFACE
MSG_DISABLEDS : Cause Source’s user interface to be taken down
MSG_ENABLEDS : Cause Source to prepare to display its user interface

DG_CONTROL / DAT_XFERGROUP
MSG_GET : Return the Data Group (currently DG_IMAGE or a custom data

group) for the upcoming transfer

There are five more DG_CONTROL operations for communications between the Source
Manager and the Source. They are discussed in Chapter 5.

Image Operations from Application to Source
DG_IMAGE / DAT_CIECOLOR
MSG_GET : Return the CIE XYZ information for the current transfer

DG_IMAGE / DAT_GRAYRESPONSE
MSG_RESET : Reinstate identity response curve for grayscale data
MSG_SET : Source uses specified response curve on grayscale data

DG_IMAGE / DAT_IMAGEFILEXFER
MSG_GET : Initiate image acquisition using the Disk File transfer mode

DG_IMAGE / DAT_IMAGEINFO
MSG_GET : Return information that describes the image for the next transfer

DG_IMAGE / DAT_IMAGELAYOUT
MSG_GET : Describe physical layout / position of “original” image
MSG_GETDEFAULT : Default information on the layout of the image
MSG_RESET : Set layout information for the next transfer to defaults
MSG_SET : Set layout for the next image transfer

DG_IMAGE / DAT_IMAGEMEMXFER
MSG_GET : Initiate image acquisition using the Buffered Memory transfer

mode

DG_IMAGE / DAT_IMAGENATIVEXFER
MSG_GET : Initiate image acquisition using the Native transfer mode

DG_IMAGE / DAT_JPEGCOMPRESSION
MSG_GET : Return JPEG compression parameters for current transfer
MSG_GETDEFAULT : Return default JPEG compression parameters
MSG_RESET : Use Source’s default JPEG parameters on JPEG transfers
MSG_SET : Use specified JPEG parameters on JPEG transfers

DG_IMAGE / DAT_PALETTE8
MSG_GET : Return palette information for current transfer
MSG_GETDEFAULT : Return Source’s default palette information for current pixel type
MSG_RESET : Use Source’s default palette for transfer of this pixel type
MSG_SET : Use specified palette for transfers of this pixel type

Chapter 3

3-36 TWAIN 1.9a Specification

DG_IMAGE / DAT_RGBRESPONSE
MSG_RESET : Use Source’s default (identity) RGB response curve
MSG_SET : Use specified response curve for RGB transfers

DG_AUDIO / DAT_AUDIOFILEXFER
MSG_GET : Transfers audio data in file mode

DG_AUDIO / DAT_AUDIOINFO
MSG_GET : Gets information about the current transfer

DG_AUDIO / DAT_AUDIONATIVEXFER
MSG_GET : Transfers audio data in native mode

DSM_Entry Parameters

The parameters for the DG_xxxx, DAT_xxxx, and MSG_xxxx fields are determined by the
operation triplet. The other parameters are filled as follows:

pOrigin
Refers to a copy of the application’s TW_IDENTITY structure.

pDest
If the operation’s destination is the Source Manager: Always holds a value of NULL. This
indicates to the Source Manager that the operation is to be consumed by it not passed on to
a Source.
If the operation’s destination is a Source: This parameter references a copy of the Source’s
TW_IDENTITY structure that is maintained by the application. The application received
this structure in response to the DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
operation sent from the application to the Source Manager. This is discussed more in the
next section (Controlling a TWAIN Session from your Application - State 3 to 4).

pData
Always references a structure or variable corresponding to the TWAIN type specified by
the DAT_xxxx parameter. Typically, but not always, the data argument type name
corresponds to a TW_xxxx data structure name. For example, the DAT_IDENTITY
argument type uses the corresponding TW_IDENTITY data structure. All data structures
can be seen in the file called TWAIN.H. The application is responsible for allocating and
deallocating the structure or element and assuring that pData correctly references it.
Note that there are two cases when the Source, rather than the application, allocates a
structure that is used during an operation.

• One occurs during DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, and MSG_RESET operations. The
application still allocates *pData but the Source allocates a structure referenced by
*pData called a “container structure”.

• The other occurs during the DG_IMAGE / DAT_JPEGCOMPRESSION operations.
The topic of data compression is covered in Chapter 4.

In all cases, the application still deallocates all structures.

 Application Implementation

TWAIN 1.9a Specification 3-37

Controlling a TWAIN Session from Your Application
In addition to the preparations discussed at the beginning of this chapter, the application must
be modified to actually initiate and control a TWAIN session.

The session consists of the seven states of the TWAIN protocol as introduced in the Technical
Overview. However, the application is not forced to move the session from State 1 to State 7
without stopping. For example, some applications may choose to pause in State 3 and move
among the higher states (4 - 7) to repeatedly open and close Sources when acquisitions are
requested by the user. Another example of session flexibility occurs when an application
transfers multiple images during a session. The application will repeatedly move the session
from State 6 to State 7 then back to State 6 and forward to State 7 again to transfer the next
image.

For the sake of simplicity, this chapter illustrates moving the session from State 1 to State 7 and
then backing it out all the way from State 7 to State 1. The diagram on the next page shows the
operation triplets that are used to transition the session from one state to the next. Detailed
information about each state and its associated transitions follow. The topics include:

• Load the Source Manager and Get the DSM_Entry (State 1 to 2)
• Open the Source Manager (State 2 to 3)
• Select the Source (during State 3)
• Open the Source (State 3 to 4)
• Negotiate Capabilities with the Source (during State 4)
• Request the Acquisition of Data from the Source (State 4 to 5)
• Recognize that the Data Transfer is Ready (State 5 to 6)
• Start and Perform the Transfer (State 6 to 7)
• Conclude the Transfer (State 7 to 6 to 5)
• Disconnect the TWAIN Session (State 5 to 1 in sequence)

Note: Sources and Applications that support the DAT_FILESYSTEM operation may negotiate
and select different device contexts immediately after the opening of a Source. For
example, an Application may choose to browse through the stored images on a digital
camera, rather than treat it as a real-time capture device.

Chapter 3

3-38 TWAIN 1.9a Specification

Figure 3-2. TWAIN States

 Application Implementation

TWAIN 1.9a Specification 3-39

State 1 to 2 - Load the Source Manager and Get the DSM_Entry

The application must load the Source Manager before it is able to call its DSM_Entry point.

Operations Used:

No TWAIN operations are used for this transition. Instead,

On Windows:
Load TWAIN_32.DLL using the LoadLibrary() routine.
Get the DSM_Entry by using the GetProcAddress() call.

On Macintosh:
If you Weak Linked against the Source Manager, you can tell if the library was loaded by
comparing DSM_Entry with kUnresolvedCFragSymbolAddress.

On Windows:

The application can load the Source Manager by doing the following:
DSMENTRYPROC pDSM_Entry;
HANDLE hDSMLib;
char szSMDir;
OFSTRUCT of;
// check for the existence of the TWAIN_32.DLL file in the Windows
// directory

GetWindowsDirectory (szSMDir, sizeof(szSMDir));
/*** Could have been networked drive with trailing ‘\’ ***/
if (szSMDir [(lstrlen (szSMDir) - 1)] != ‘\\’)
{ lstrcat(szSMDir, "\\");
}

if ((OpenFile(szSMDir, &of, OF_EXIST) != -1)
{

// load the DLL
if (hDSMDLL = LoadLibrary(“TWAIN_32.DLL”)) != NULL)
{

// check if library was loaded
if (hDSMDLL >= (HANDLE)VALID_HANDLE)
{

if (lpDSM_Entry = (DSMENTRYPROC)GetProcAddress(hDSMDLL,
MAKEINTRESOURCE (1))) != NULL)

{
if (lpDSM_Entry)

FreeLibrary(hDSMDLL);
}

}
}

}

Note, the code appends TWAIN_32.DLL to the end of the Windows directory and verifies that
the file exists before calling LoadLibrary(). Applications are strongly urged to perform a
dynamic run-time link to DSM_Entry() by calling LoadLibrary() rather than statically linking
to TWAIN_32.LIB via the linker. If the TWAIN_32.DLL is not installed on the machine,
Microsoft Windows will fail to load an application that statically links to TWAIN_32.LIB. If
the Application has a dynamic link, however, it will be able to give users a meaningful error
message, and perhaps continue with image acquisition facilities disabled.

Chapter 3

3-40 TWAIN 1.9a Specification

After getting the DSM_Entry, the application must check pDSM_Entry. If it is NULL, it means
that the Source Manager has not been installed on the user’s machine and the application
cannot provide any TWAIN services to the user. If NULL, the application must not attempt to
call *pDSM_Entry as this would result in an Unrecoverable Application Error (UAE).

On Macintosh:

The Source Manager is a shared library in the Extensions folder of the active System Folder.
When building your application, you should Weak Link against this library. At run time, you
can tell if the Source Manager was loaded by comparing DSM_Entry with
kUnresolvedCFragSymbolAddress.

The following code segment illustrates this:
if (DSM_Entry == (void*) kUnresolvedCFragSymbolAddress)
{

// Weak link failed (library is not installed)
// DSM_Entry cannot be called.

}
else
{

// Source Manager is loaded and
// DSM_Enty() can be called.

}

State 2 to 3 - Open the Source Manager

The Source Manager has been loaded. The application must now open the Source Manager.

One Operation is Used:

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

pOrigin
The application must allocate a structure of type TW_IDENTITY and fill in all fields except
for the Id field. Once the structure is prepared, this pOrigin parameter should point at that
structure.
During the MSG_OPENDSM operation, the Source Manager will fill in the Id field with a
unique identifier of the application. The value of this identifier is only valid while the
application is connected to the Source Manager.
The application must save the entire structure. From now on, the structure will be referred
to by the pOrigin parameter to identify the application in every call the application makes
to DSM_Entry().
The TW_IDENTITY structure is defined in the TWAIN.H file but for quick reference, it
looks like this:

/* DAT_IDENTITY Identifies the program/library/code */
/* resource. */
typedef struct {

TW_UINT32 Id; /* Unique number for identification*/
TW_VERSION Version;
TW_UINT16 ProtocolMajor;
TW_UINT16 ProtocolMinor;
TW_UINT32 SupportedGroups;/*Bit field OR combination */

/*of DG_constants found in */
/*the TWAIN.H file */

 Application Implementation

TWAIN 1.9a Specification 3-41

TW_STR32 Manufacturer;
TW_STR32 ProductFamily;
TW_STR32 ProductName;

} TW_IDENTITY, FAR *pTW_IDENTITY;

pDest
Set to NULL indicating the operation is intended for the Source Manager.

pData
Typically, you would expect to see this point to a structure of type TW_PARENT but this is
not the case. This is an exception to the usual situation where the DAT field of the triplet
identifies the data structure for pData.

• On Windows: pData points to the window handle (hWnd) that will act as the
Source’s “parent”. The variable is of type TW_INT32. For 16 bit Microsoft Windows,
the handle is stored in the low word of the 32 bit integer and the upper word is set to
zero. If running under the WIN32 environment, this is a 32 bit window handle. The
Source Manager will maintain a copy of this window handle for posting messages
back to the application.

• On Macintosh: pData should be a 32-bit NULL value.

How to Initialize the TW_IDENTITY Structure

Here is a Windows example of code used to initialize the application’s TW_IDENTITY
structure.

TW_IDENTITY AppID; // App’s identity structure
AppID.Id = 0; // Initialize to 0 (Source Manager

// will assign real value)
AppID.Version.MajorNum = 3; //Your app's version number
AppID.Version.MinorNum = 5;
AppID.Version.Language = TWLG_ENGLISH_USA;
AppID.Version.Country = TWCY_USA;
lstrcpy (AppID.Version.Info, "Your App's Version String");
AppID.ProtocolMajor = TWON_PROTOCOLMAJOR;
AppID.ProtocolMinor = TWON_PROTOCOLMINOR;
AppID.SupportedGroups = DG_IMAGE | DG_CONTROL;
lstrcpy (AppID.Manufacturer, "App's Manufacturer");
lstrcpy (AppID.ProductFamily, "App's Product Family");
lstrcpy (AppID.ProductName, "Specific App Product Name");

On Windows: Using DSM_Entry to open the Source Manager
TW_UINT16 rc;
rc = (*pDSM_Entry) (&AppID,

NULL,
DG_CONTROL,
DAT_PARENT,
MSG_OPENDSM,
(TW_MEMREF) &hWnd);

where AppID is the TW_IDENTITY structure that the application set up to identify itself
and hWnd is the application’s main window handle.

Chapter 3

3-42 TWAIN 1.9a Specification

On Macintosh: Using DSM_Entry to open the Source Manager
rc = DSM_Entry(&AppID,

NULL,
DG_CONTROL,
DAT_PARENT,
MSG_OPENDSM,
NULL);

There is no need to open the resource fork of the Source Manager. The Source Manager will
automatically open its resource fork, load any needed resources, and close it before
returning control to the application.
Note: Once a particular Data Source has been opened by the application, the resource fork
for that Data Source will remain open and at the top of the resource chain until the Data
Source is closed. Although the Source Manager will save and restore CurResFile each time
it is called, you should be aware of this if your application loads resources while acquiring
images.

State 3 - Select the Source

The Source Manager has just been opened and is now available to assist your application in the
selection of the desired Source.

One Operation is Used:

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

pOrigin
Points to the application’s TW_IDENTITY structure. The desired data type should be
specified by the application. This was done when you initialized the SupportedGroups
field in your application’s TW_IDENTITY structure.
This causes the Source Manager to make available for selection by the user only those
Sources that can provide the requested data type(s). All other Sources are grayed out.
(Note, if more than one data type were available, for example image and text, and the
application wanted to accept both types of data, it would do a bit-wise OR of the types’
constants and place the results into the SupportedGroups field.)

pDest
Set to NULL.

pData
Points to a structure of type TW_IDENTITY. The application must allocate this structure
prior to making the call to DSM_Entry. Once the structure is allocated, the application
must:

• Set the Id field to zero.
• Set the ProductName field to the null string (“\0”). (If the application wants a

specific Source to be highlighted in the Select Source dialog box, other than the
system default, it can enter the ProductName of that Source into the ProductName
field instead of null. The system default Source and other available Sources can be
determined by using the DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT,
MSG_GETFIRST and MSG_GETNEXT operations.)

Additional fields of the structure will be filled in by the Source Manager during this
operation to identify the selected Source. Make sure the application keeps a copy of this

 Application Implementation

TWAIN 1.9a Specification 3-43

updated structure after completing this call. You will use it to identify the Source from
now on.

The most common approach for selecting the Source is to use the Source Manager’s Select
Source dialog box. This is typically displayed when the user clicks on your Select Source
option. To do this:

1. The application sends a DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
operation to the Source Manager to have it display its dialog box. The dialog displays a
list of all Sources that are installed on the system that can provide data of the type
specified by the application. It highlights the Source that is the system default unless
the application requests otherwise.

2. The user selects a Source or presses the Cancel button. If no devices are available, the
Select Source Dialog’s Select/OK button will be grayed out and the user will have no
choice but to select Cancel.

3. The application must check the Return Code of DSM_Entry to determine the user’s
action.
a. If TWRC_SUCCESS: Their selected Source is listed in the TW_IDENTITY

structure pointed to by the pData parameter and is now the default Source.
b. If TWRC_CANCEL: The user either clicked Cancel intentionally or had no other

choice because no devices were listed. Do not attempt to open a Source.
c. If TWRC_FAILURE: Use the DG_CONTROL / DAT_STATUS / MSG_GET

operation (sent to the Source Manager) to determine the cause. The most likely
cause is a lack of sufficient memory.

As an alternative to using the Source Manager’s Select Source dialog, the application can devise
its own method for selecting a Source. For example, it could create and display its own user
interface or simply select a Source without offering the user a choice. This alternative is
discussed in Chapter 4.

State 3 to 4 - Open the Source

The Source Manager is open and able to help your application open a Source.

One Operation is Used:

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Set to NULL.

pData
Points to a structure of type TW_IDENTITY.
Typically, this points to the application’s copy of the Source’s TW_IDENTITY structure
filled in during the MSG_USERSELECT operation previously.
However, if the application wishes to have the Source Manager simply open the default
Source, it can do this by setting the TW_IDENTITY.ProductName field to “\0” (null string)
and the TW_IDENTITY.Id field to zero.

Chapter 3

3-44 TWAIN 1.9a Specification

During the MSG_OPENDS operation, the Source Manager assigns a unique identifier to the
Source and records it in the TW_IDENTITY.Id field. Copy the resulting TW_IDENTITY
structure. Once the Source is opened, the application will point to this resulting structure
via the pDest parameter on every call that the application makes to DSM_Entry where the
desired destination is this Source.

Note: The user is not required to take advantage of the Select Source option. They may
click on the Acquire option without having selected a Source. In that case, your
application should open the default Source. The default source is either the last
one used by the user or the last one installed.

State 4 - Negotiate Capabilities with the Source

At this point, the application has a structure identifying the open Source. Operations can now
be directed from the application to that Source. To receive a single image from the Source, only
one capability, CAP_XFERCOUNT, must be negotiated now. All other capability negotiation is
optional.

Two Operations are Used:

DG_CONTROL / DAT_CAPABILITY / MSG_GET

DG_CONTROL / DAT_CAPABILITY / MSG_SET

The parameters for each of the operations, in addition to the triplet, are these:

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the desired Source’s TW_IDENTITY structure. The Source Manager will receive
the DSM_Entry call, recognize that the destination is a Source rather than itself, and pass
the operation along to the Source via the DS_Entry function.

pData
Points to a structure of type TW_CAPABILITY.
The definition of TW_CAPABILITY is:

typedef struct {
TW_UINT16 Cap; /* ID of capability to get or set */
TW_UINT16 ConType; /* TWON_ONEVALUE, TWON_RANGE, */

/* TWON_ENUMERATION or TWON_ARRAY */
TW_HANDLE hContainer; /* Handle to container of type */

/* ConType */
} TW_CAPABILITY, FAR *pTW_CAPABILITY;

The Source allocates the container structure pointed to by the hContainer field when called
by the MSG_GET operation. The application allocates it when calling with the MSG_SET
operation. Regardless of who allocated it, the application deallocates the structure either
when the operation is complete or when the application no longer needs to maintain the
information.

 Application Implementation

TWAIN 1.9a Specification 3-45

Each operation serves a special purpose:

MSG_GET
Since Sources are not required to support all capabilities, this operation can be used to
determine if a particular TWAIN-defined capability is supported by a Source. The
application needs to set the Cap field of the TW_CAPABILITY structure to the identifier
representing the capability of interest. The constants identifying each capability are listed
in the TWAIN.H file.
If the capability is supported and the operation is successful, it returns the Current, Default,
and Available values. These values reflect previous MSG_SET operations on the capability
which may have altered them from the TWAIN default values for the capability.
This operation may fail due to several causes. If the capability is not supported by the
Source, the Return Code will be TWRC_FAILURE and the condition code will be one of the
following:

TWCC_CAPUNSUPPORTED Capability not supported by Source
TWCC_CAPBADOPERATION Operation not supported by capability
TWCC_CAPSEQERROR Capability has dependency on other capability

Applications should be prepared to receive the condition code TWCC_BADCAP from
Sources written prior to TWAIN 1.7, which maps to any of the three situations mentioned
above.

MSG_SET
Changes the Current or Available Value(s) of the specified capability to those requested by
the application. The application may choose to set just the capability’s Current Value or it
may specify a list of values for the Source to use as the complete set of Available Values for
that capability.

Note: Source is not required to limit values based on the application’s request although it
is strongly recommended that they do so. If the Return Code indicates
TWRC_FAILURE, check the Condition Code. A code of TWCC_BADVALUE can
mean:

• The application sent an invalid value for this Source’s range.
• The Source does not allow the setting of this capability.
• The Source doesn’t allow the type of container used by the application to set this

capability.

Capability negotiation gives the application developer power to guide the Source and control
the images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4 for a more extensive discussion of capabilities including information on how to delay
the negotiation of some capabilities beyond State 4.

Note: It is important here to once again remind application writers to always check the
return code from any negotiated capabilities transactions.

Chapter 3

3-46 TWAIN 1.9a Specification

Set the Capability to Specify the Number of Images the Application can Transfer

The capability that specifies how many images an application can receive during a TWAIN
session is CAP_XFERCOUNT. All Sources must support this capability. Possible values for
CAP_XFERCOUNT are:

Value: Description:
1 Application wants to receive a single image.
greater than 1 Application wants to receive this specific number of images.
-1 Application can accept any arbitrary number of images during the

session. This is the default for this capability.
0 This value has no legitimate meaning and the application should not

set the capability to this value. If a Source receives this value during a
MSG_SET operation, it should maintain the Current Value without
change and return TWRC_FAILURE and TWCC_BADVALUE.

The default value allows multiple images to be transferred. The following is a simple code
example illustrating the setting of a capability and specifically showing how to limit the
number of images to one. Notice there are differences between the code for Windows and
Macintosh applications. Both versions are included here with ifdef statements for MSWIN
versus MAC.

TW_CAPABILITY twCapability;
TW_INT16 count;
TW_STATUS twStatus;
TW_UINT16 rc;
#ifdef _MSWIN_
pTW_ONEVALUE pval;
#endif
#ifdef _MAC_
TW_HANDLE h;
pTW_INT16 pInt16;
#endif

//-----Setup for MSG_SET for CAP_XFERCOUNT
twCapability.Cap = CAP_XFERCOUNT;
twCapability.ConType = TWON_ONEVALUE;

#ifdef _MSWIN_
twCapability.hContainer = GlobalAlloc(GHND, sizeof(TW_ONEVALUE));
pval = (pTW_ONEVALUE) GlobalLock(twCapability.hContainer);
pval->ItemType = TWTY_INT16;
pval->Item = 1; //This app will only accept 1 image
GlobalUnlock(twCapability.hContainer);
#endif

#ifdef _MAC_
twCapability.hContainer = (TW_HANDLE)h = NewHandle(sizeof(TW_ONEVALUE));
((TW_ONEVALUE*)(*h))->ItemType = TWTY_INT16;
count = 1; //This app will only accept 1 image
pInt16 = ((TW_ONEVALUE*)(*h))->Item;
*pInt16 = count;
#endif

 Application Implementation

TWAIN 1.9a Specification 3-47

//-----Set the CAP_XFERCOUNT
rc = (*pDSM_Entry) (&AppID,

&SourceID,
DG_CONTROL,
DAT_CAPABILITY,
MSG_SET,

(TW_MEMREF)&twCapability);

#ifdef _MSWIN_
GlobalFree((HANDLE)twContainer.hContainer);
#endif
#ifdef _MAC_
DisposHandle((HANDLE)twContainer.hContainer);
#endif

//-----Check Return Codes
//SUCCESS
if (rc == TWRC_SUCCESS)

//the value was set
//APPROXIMATION MADE
else if (rc == TWRC_CHECKSTATUS)

{
//The value could not be matched exactly
//MSG_GET to get the new current value
twCapability.Cap = CAP_XFERCOUNT;
twCapability.ConType = TWON_DONTCARE16; //Source will specify
twCapability.hContainer = NULL; //Source allocates and fills container

rc = (*pDSM_Entry) (&AppID,
&SourceID,
DG_CONTROL,
DAT_CAPABILITY,
MSG_GET,

(TW_MEMREF)&twCapability);

//remember current value
#ifdef _MSWIN_
pval = (pTW_ONEVALUE) GlobalLock(twCapability.hContainer);
count = pval->Item;
//free hContainer allocated by Source
GlobalFree((HANDLE)twCapability.hContainer);
#endif

#ifdef _MAC_
pInt16 = ((TW_ONEVALUE*)(*h))->Item;
count = *pInt16;
//free hContainer allocated by Source
DisposeHandle((HANDLE)twCapability.hContainer);
#endif
}

Chapter 3

3-48 TWAIN 1.9a Specification

//MSG_SET FAILED
else if (rc == TWRC_FAILURE)

{
//check Condition Code
rc = (*pDSM_Entry) (&AppID,

&SourceID,
DG_CONTROL,
DAT_STATUS,
MSG_GET,

(TW_MEMREF)&twStatus);
switch (twStatus.ConditionCode)

{
TWCC_BADCAP:
TWCC_CAPUNSUPPORTED:
TWCC_CAPBADOPERATION:
TWCC_CAPSEQERROR:

//Source does not support setting this cap
//All Sources must support CAP_XFERCOUNT
break;

TWCC_BADDEST:
//The Source specified by pSourceID is not open
break;

TWCC_BADVALUE:
//The value set was out of range for this Source
//Use MSG_GET to determine what setting was made
//See the TWRC_CHECKSTATUS case handled earlier
break;

TWCC_SEQERROR:
//Operation invoked in invalid state
break;

}
}

Other Capabilities
Image Type
Although not shown, the application should be aware of the Source’s ICAP_PIXELTYPE
and ICAP_BITDEPTH. If your application cannot accept all of the Source’s Available
Values, capability negotiation should be done. (Refer to Chapter 4.)

Transfer Mode
The default transfer mode is Native. That means the Source will access the largest block of
memory available and use it to transfer the entire image to the application at once. If the
available memory is not large enough for the transfer, then the Source should fail the
transfer. The application does not need to do anything to select this transfer mode. If the
application wishes to specify a different transfer mode, Disk File or Buffered Memory,
further capability negotiation is required. (Refer to Chapter 4.)

 Application Implementation

TWAIN 1.9a Specification 3-49

State 4 to 5 - Request the Acquisition of Data from the Source

The Source device is open and capabilities have been negotiated. The application now enables
the Source so it can show its user interface, if requested, and prepare to acquire data.

One Operation is Used:

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_USERINTERFACE.
The definition of TW_USERINTERFACE is:

typedef struct {
TW_BOOL ShowUI;
TW_BOOL ModalUI;
TW_HANDLE hParent;

} TW_USERINTERFACE, FAR *pTW_USERINTERFACE;

Set the ShowUI field to TRUE if you want the Source to display its user interface.
Otherwise, set to FALSE.
The Application will set the ModalUI field to TRUE if it wants the Source to run modal,
and FALSE if it wants the Source to run modeless. Please note that to successfully run
modal, it may be necessary for the application to disable inputs to its windows while the
Source’s GUI is running.
The application sets the hParent field differently depending on the platform on which the
application runs.

• On Windows - The application should place a handle to the Window that is acting as
the Source’s parent.

• On Macintosh - The application sets this field to NULL.

In response to the user choosing the application’s Acquire menu option, the application sends
this operation to the Source to enable it. The application typically requests that the Source
display the Source’s user interface to assist the user in acquiring data. If the Source is told to
display its user interface, it will display it when it receives the operation triplet. Modal and
Modeless interfaces are discussed in Chapters 4 and 5. Sources must check the ShowUI field
and return an error if they cannot support the specified mode. In other words it is unacceptable
for a source to ignore a ShowUI = FALSE request and still activate its user interface. The
application may develop its own user interface instead of using the Source’s. This is discussed
in Chapter 4.

Note: Once the Source is enabled via the DG_CONTROL / DAT_USERINTERFACE/
MSG_ENABLEDS operation, all events that enter the application’s main event loop
must be immediately forwarded to the Source. The explanation for this was given
earlier in this chapter when you were instructed to modify the event loop in
preparation for a TWAIN session.

Chapter 3

3-50 TWAIN 1.9a Specification

State 5 to 6 - Recognize that the Data Transfer is Ready

The Source is now working with the user to arrange the transfer of the desired data. Unlike all
the earlier transitions, the Source, not the application, controls the transition from State 5 to
State 6.

No Operations (from the application) are Used:

This transition is not triggered by the application sending an operation. The Source causes the
transition.

Remember while the Source is enabled, the application is forwarding all events in its event loop
to the Source by using the DG_CONTROL /DAT_EVENT / MSG_PROCESSEVENT operation.
The TW_EVENT data structure associated with this operation looks like this:

typedef struct {
TW_MEMREF pEvent; /*Windows pMSG or MAC pEvent */
TW_UINT16 TWMessage;/*TW message from the Source to the application*/

} TW_EVENT, FAR *pTW_EVENT;

The Source can set the TWMessage field to signal when the Source is ready to transfer data.
Following each DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT operation, the
application must check the TWMessage field. If it contains MSG_XFERREADY, the session is in
State 6 and the Source will wait for the application to request the actual transfer of data.

State 6 to 7 - Start and Perform the Transfer

The Source indicated it is ready to transfer data. It is waiting for the application to inquire
about the image details, initiate the actual transfer, and, hence, transition the session from
State 6 to 7. If the initiation (DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET) fails, the
session does not transition to State 7 but remains in State 6.

Two Operations are Used:

DG_IMAGE / DAT_IMAGEINFO / MSG_GET
pOrigin
Points to the application’s TW_IDENTITY structure.
pDest
Points to the Source’s TW_IDENTITY structure.
pData
Points to a structure of type TW_IMAGEINFO. The definition of TW_IMAGEINFO is:

typedef struct {
TW_FIX32 XResolution;
TW_FIX32 YResolution;
TW_INT32 ImageWidth;
TW_INT32 ImageLength;
TW_INT16 SamplesPerPixel;
TW_INT16 BitsPerSample[8];
TW_INT16 BitsPerPixel;
TW_BOOL Planar;
TW_INT16 PixelType;
TW_UINT32 Compression;

} TW_IMAGEINFO, FAR *pTW_IMAGEINFO;

 Application Implementation

TWAIN 1.9a Specification 3-51

The Source will fill in information about the image that is to be transferred. The application
uses this operation to get the information regardless of which transfer mode (Native, Disk
File, or Buffered Memory) will be used to transfer the data.

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a TW_UINT32 variable. This is an exception from the typical pattern.

• On Windows: This is a pointer to a handle variable. For 16 bit Microsoft Windows,
the handle is stored in the low word of the 32-bit integer and the upper word is set to
zero. If running under the WIN32 environment, this is a 32 bit window handle. The
Source will set pHandle to point to a device-independent bitmap (DIB) that it
allocates.

• On Macintosh: This is a pointer to a PicHandle. The Source will set pHandle to
point to a PicHandle that the Source allocates.

In either case, the application is responsible for deallocating the memory block holding the
Native-format image.

The application may want to inquire about the image data that it will be receiving. The
DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation allows this. Other operations, such
as DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET, provide additional information. This
information can be used to determine if the application actually wants to initiate the transfer.

To actually transfer the data in the Native mode, the application invokes the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation. The Native mode is the default transfer
mode and will be used unless a different mode was negotiated via capabilities in State 4. For
the Native mode transfer, the application only invokes this operation once per image. The
Source returns the TWRC_XFERDONE value when the transfer is complete. This type of
transfer cannot be aborted by the application once initiated. (Whether it can be aborted from
the Source’s User Interface depends on the Source.) Use of the other transfer modes, Disk File
and Buffered Memory, are discussed in Chapter 4.

Chapter 3

3-52 TWAIN 1.9a Specification

The following code illustrates how to get information about the image that will be transferred
and how to actually perform the transfer. This code segment is continued in the next section
(State 7 to 6 to 5).

// After receiving MSG_XFERREADY
TW_UINT16 TransferNativeImage()
{

TW_IMAGEINFO twImageInfo;
TW_UINT16 rc;
TW_UINT32 hBitmap;
TW_BOOL PendingXfers = TRUE;

while (PendingXfers)
{

rc = (*pDSM_Entry)(&AppId,
&SourceId,
DG_IMAGE,
DAT_IMAGEINFO,
MSG_GET,
(TW_MEMREF)&twImageInfo);

if (rc == TWRC_SUCCESS)
Examine the image information

// Transfer the image natively
hBitmap = NULL;

rc = (*pDSM_Entry)(&AppId,
SourceId,
DG_IMAGE,
DAT_IMAGENATIVEXFER,
MSG_GET,
(TW_MEMREF)&HbITMAP);

// Check the return code

switch(rc)
{

case TWRC_XFERDONE:
// Notes: hBitmap points to a valid image Native image (DIB or
// PICT)
// The application is now responsible for deallocating the memory.
// The source is currently in state 7.
// The application must now acknowledge the end of the transfer,
// determine if other transfers are pending and shut down the data
// source.

PendingXfers = DoEndXfer(); //Function found in code
//example in next section

break;

 Application Implementation

TWAIN 1.9a Specification 3-53

case TWRC_CANCEL:
// The user canceled the transfer.
// hBitmap is an invalid handle but memory was allocated.
// Application is responsible for deallocating the memory.
// The source is still in state 7.
// The application must check for pending transfers and shut down
// the data source.

PendingXfers = DoEndXfer(); //Function found in code
//example in next section

break;

case TWRC_FAILURE:
// The transfer failed for some reason.
// hBitmap is invalid and no memory was allocated.
// Condition code will contain more information as to the cause of
// the failure.
// The state transition failed, the source is in state 6.
// The image data is still pending.
// The application should abort the transfer.

DoAbortXfer(MSG_RESET); //Function in next section
PendingXfers = FALSE;
break;

}
}

}

//Check the return code
switch (rc)

{
case TWRC_XFERDONE:

//hBitMap points to a valid Native Image (DIB or PICT)
//The application is responsible for deallocating the memory
//The source is in State 7
//Acknowledge the end of the transfer

goto LABEL_DO_ENDXFER //found in next section
break;

case TWRC_CANCEL:
//The user canceled the transfer
//hBitMap is invalid
//The source is in State 7
//Acknowledge the end of the transfer

goto LABEL_DO_ENDXFER //found in next section
break;

case TWRC_FAILURE:
//The transfer failed
//hBitMap is invalid and no memory was allocated
//Check Condition Code for more information
//The state transition failed, the source is in State 6
//The image data is still pending
//To abort the transfer

goto LABEL_DO_ENDXFER //found in code example for
//the next section

break;

}

Chapter 3

3-54 TWAIN 1.9a Specification

State 7 to 6 to 5 - Conclude the Transfer

While the transfer occurs, the session is in State 7. When the Source indicates via the Return
Code that the transfer is done (TWRC_XFERDONE) or canceled (TWRC_CANCEL), the
application needs to transition the session backwards.

One Operation is Used:

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_PENDINGXFERS.
The definition of TW_PENDINGXFERS is:

typedef struct {
TW_UINT16 Count;
TW_UINT32 Reserved;

} TW_PENDINGXFERS, FAR *pTW_PENDINGXFERS;

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation is sent by the
application to the Source at the end of every transfer, successful or canceled, to indicate the
application has received all the data it expected.

After this operation returns, the application should examine the pData->Count field to
determine if there are more images waiting to be transferred. The value of pData->Count
indicates the following:

Value Description
pData->Count = 0 If zero, the Source will “automatically” transition back to State 5

without the application needing to take any additional action.
Application writers please make special note of this instance of
an implied source transition.
The application should return to its main event loop and await
notification from the Source (either MSG_XFERREADY or
MSG_CLOSEDSREQ).

pData->Count = -1
or
 pData->Count > 0

The Source has more transfers available and is waiting in State 6.
If the value is -1, that means the Source has another image
available but it is unsure of how many more will be available. This
might occur if the Source was controlling a device equipped with a
document feeder and some unknown number of documents were
stacked in that feeder.
If the number of images is known, the Count will be a value
greater than 0.
Either way, the Source will remain in State 6 ready for the
application to initiate another transfer. The Source will NOT send
another MSG_XFERREADY to trigger this. The application should
proceed as if it just received a MSG_XFERREADY.

 Application Implementation

TWAIN 1.9a Specification 3-55

If more images were pending and your application does not wish to transfer all of them, you
can discard one or all pending images by doing the following:

• To discard just the next pending image, use the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. Then, check the Count field again
to determine if there are additional images pending.

• To discard all pending images, use the DG_CONTROL / DAT_PENDINGXFERS /
MSG_RESET operation. Following successful execution of this operation, the session will
be in State 5.

The following code is a continuation of the code example started in the State 6 to 7 section. It
illustrates how to conclude the transfer.

void DoEndXfer()
{

TW_PENDINGXFERS twPendingXfers;

// If the return code from DG_IMAGE/DAT_IMAGENATIVEXFER/MSG_GET was
// TWRC_CANCEL or TWRC_DONE

// Acknowledge the end of the transfer
rc = (*pDSM_Entry)(&AppId,

SourceId,
DG_CONTROL,
DAT_PENDINGXFERS,
MSG_ENDXFER,
(TW_MEMREF)&twPendingXfers);

if (rc == TWRC_SUCCESS)
{

// Check for additional pending xfers
if (twPendingXfers.Count == 0)
{

// Source is now in state 5. NOTE THE IMPLIED STATE
// TRANSITION! Disable and close the source and
// return to TransferNativeImage with a FALSE notifying
// it to not attempt further image transfers.

DisableAndCloseDS();
return(FALSE);

}
else
{

// Source is in state 6 ready to transfer another image
if want to transfer this image
{

// returns to the caller, TransferNativeImage
// and allows the next image to transfer

return TRUE;
}

Chapter 3

3-56 TWAIN 1.9a Specification

else if want to abort and skip over this transfer
{

// The current image will be skipped, and the
// next, if exists will be acquired by returning
// to TransferNativeImage

if (DoAbortXfer(MSG_ENDXFER) > 0)
return(TRUE);

else
return(FALSE);

}
}

}
}

}

TW_UINT16 DoAbortXfer(TW_UINT16 AbortType)
{

rc = (*pDSM_Entry)(&AppId,
SourceId,
DG_CONTROL,
DAT_PENDINGXFERS,
MSG_ENDXFER,
(TW_MEMREF)&twPendingXfers);

if (rc == TWRC_SUCCESS)
{

// If the next image is to be skipped, but subsequent images
// are still to be acquired, the PendingXfers will receive
// the MSG_ENDXFER, otherwise, PendingXfers will receive
// MSG_RESET.

rc = (*pDSM_Entry)(&AppId,
SourceId,
DG_CONTROL,
DAT_PENDINGXFERS,
AbortType,
(TW_MEMREF)&twPendingXfers);

}

}
//To abort all pending transfers:
LABEL_ABORT_ALL:

{
rc = (*pDSM_Entry) (&AppID,

&SourceID,
DG_CONTROL,
DAT_PENDINGXFERS,
MSG_RESET,
(TW_MEMREF)&twPendingXfers);

if (rc == TWRC_SUCCESS)
//Source is now in state 5

}
}

 Application Implementation

TWAIN 1.9a Specification 3-57

State 5 to 1 - Disconnect the TWAIN Session

Once the application has acquired all desired data from the Source, the application can
disconnect the TWAIN session. To do this, the application transitions the session backwards.

In the last section, the Source transitioned to State 5 when there were no more images to
transfer (TW_PENDINGXFERS.Count = 0) or the application called the DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET operation to purge all remaining transfers. To back out
the remainder of the session:

Three Operations (plus some platform-dependent code) are Used:

To move from State 5 to State 4

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Points to the Source’s TW_IDENTITY structure.

pData
Points to a structure of type TW_USERINTERFACE.
The definition of TW_USERINTERFACE is:

typedef struct {
TW_BOOL ShowUI;
TW_BOOL ModalUI;
TW_HANDLE hParent;

} TW_USERINTERFACE, FAR *pTW_USERINTERFACE;

Its contents are not used.

Note the following:

• If the Source’s User Interface was displayed: This operation causes the Source’s user
interface, if displayed during the transition from State 4 to 5, to be lowered. This
operation is sent by the application in response to a MSG_CLOSEDSREQ from the
Source. This request from the Source appears in the TWMessage field of the TW_EVENT
structure. It is sent back from the DG_CONTROL / DAT_EVENT /
MSG_PROCESSEVENT operation used by the application to send events to the
application.

• If the application did not have the Source’s User Interface displayed: The application
invokes this command when all transfers have been completed. In addition, the
application could invoke this operation to transition back to State 4 if it wanted to modify
one or more of the capability settings before acquiring more data.

Chapter 3

3-58 TWAIN 1.9a Specification

To move from State 4 to State 3

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Should reference a NULL value (indicates destination is Source Manager)

pData
Points to a structure of type TW_IDENTITY
This is the same TW_IDENTITY structure that you have used throughout the session to
direct operation triplets to this Source.

When this operation is completed, the Source is closed. (In a more complicated scenario, if the
application had more than one Source open, it must close them all before closing the Source
Manager. Once all Sources are closed and the application does not plan to initiate any other
TWAIN session with another Source, the Source Manager should be closed by the application.)

To move from State 3 to State 2

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

pOrigin
Points to the application’s TW_IDENTITY structure.

pDest
Should reference a NULL value (indicates destination is Source Manager)

pData
Typically, you would expect to see this point to a structure of type TW_PARENT but this is
not the case. This is an exception to the usual situation where the DAT field of the triplet
identifies the data structure for pData.
On Windows: pData points to the window handle (hWnd) that acted as the Source’s
“parent”. The variable is of type TW_INT32. For 16 bit Microsoft Windows, the handle is
stored in the low word of the 32 bit integer and the upper word is set to zero. If running
under the WIN32 environment, this is a 32 bit window handle.
On Macintosh: pData should be a 32-bit NULL value.

To Move from State 2 to State 1

Once the Source Manager has been closed, the application must unload the DLL (on Windows)
or code resource (on Macintosh) from memory before continuing.

On Windows:
Use FreeLibrary(hDSMLib); where hDSMLib is the handle to the Source Manager DLL
returned from the call to LoadLibrary() seen earlier (in the State 1 to 2 section).

On Macintosh:
No action is necessary. The shared library will be automatically unloaded when your
application terminates.

 Application Implementation

TWAIN 1.9a Specification 3-59

TWAIN Session Review

Applications have flexibility regarding which state they leave their TWAIN sessions in between
TWAIN commands (such as Select Source and Acquire).

For example:

• An application might load the Source Manager on start-up and unload it on exit. Or, it
might load the Source Manager only when it is needed (as indicated by Select Source and
Acquire).

• An application might open a Source and leave it in State 4 between acquires.

The following is the simplest view of application’s TWAIN flow. All TWAIN actions are
initiated by a TWAIN command, either user-initiated (Select Source and Acquire) or
notification from the Source (MSG_XFERREADY and MSG_CLOSEDSREQ).

Application Receives State Application Action

Select Source... 1 -> 2

2 -> 3

3 -> 2

2 -> 1

Load Source Manager

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Unload Source Manager

Acquire... 1 -> 2

2 -> 3

3 -> 4

4 -> 5

Load Source Manager

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

Capability Negotiation

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

MSG_XFERREADY 6

6 -> 7

7 -> 6

6 -> 5

For each pending transfer:

 DG_IMAGE / DAT_IMAGEINFO / MSG_GET

 DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

 DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

 DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET

 DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Automatic transition to State 5 if TW_PENDINGXFERS.Count
equals 0.

MSG_CLOSEDSREQ 5 -> 4

4 -> 3

3 -> 2

2 -> 1

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Unload the Source Manager

Chapter 3

3-60 TWAIN 1.9a Specification

Error Handling
Your application must be robust enough to recognize and handle error conditions that may
occur during a TWAIN session. Every TWAIN operation triplet has a defined set of Return
Codes and Conditions Codes that it may generate. These codes are listed on the reference
pages for each triplet located in Chapter 7. Be sure to check the Return Code following every
call to the DSM_Entry function. If it is TWRC_FAILURE, make sure your code checks the
Condition Code and handles the error condition appropriately.

The following code segment illustrates the basic operations for doing this:
TW_STATUS twStatus;

if (rc == TWRC_FAILURE)
//check Condition Code
rc = (*pDSM_Entry) (&AppID,

&SourceID,
DG_CONTROL,
DAT_STATUS,
MSG_GET,

(TW_MEMREF)&twStatus);
switch (twStatus.ConditionCode)

//handle each possible Condition Code for the operation

Common Types of Error Conditions

Sequence Errors

The TWAIN protocol allows the invoking of specific operations only while the TWAIN session
is in a particular state or states. The valid states for each operation are listed on the operation’s
reference pages in Chapter 7. If an operation is called from an inappropriate state, the call will
return an error, TWRC_FAILURE, and set the Condition Code to TWCC_SEQERROR.
Although this error should not occur if both the application and Source are behaving correctly,
it is possible for the session to get out of sync.

If this error occurs, correct it by assuming the Source believes it is in State 7. The application
should invoke the correct operations to back up from State 7 to State 6 and so on down the
states until an operation succeeds. Then, the application can continue or terminate the session.

The following pseudo code illustrates this:
if (TWCC_SEQERROR)

// Assume State 7, start backing out from State 7 until
// the Condition Code != TWCC_SEQERROR
State 7 to 6 DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
State 6 to 5 DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
State 5 to 4 DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
State 4 to 3 DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

 Application Implementation

TWAIN 1.9a Specification 3-61

Low Memory Errors

Another common type of error condition occurs when insufficient memory is available to
perform a requested operation. The most likely times for this to occur are:

• When a Source is being opened
• When a Source is being enabled
• During a Native image transfer

Your application must check the Return Code and Condition Code (TWRC_FAILURE /
TWCC_LOWMEMORY) to recognize this. Your application may be able to free up sufficient
memory to continue or it must quit.

State Transition Operation Triplet Errors

Many operations normally cause state transitions. If one of these operations fails, for example,
returns TWRC_FAILURE, do not make the state transition. The application must check the
Return Code following every operation and update the current state only if the operation
succeeds.

An implied state transition during DG_CONTROL/DAT_PENDINGXFERS/ MSG_ENDXFER
deserves special note here. If the Count field of the TW_PENDINGXFERS structure is zero then
the source will automatically transition back to State 5. Application writers should be aware of
this condition and react accordingly.

Error Handling and State Transitions

It is possible that during execution of any triplet that the data source will fail unexpectedly. It
is very important that applications pay attention to the TWAIN State of the data source at the
time of failure. A hanging or deadlock condition will occur if the application fails to recover
from error conditions with the proper state transitions. Most error handling is fairly obvious,
however the following items have been mishandled in the past.

Failing Transition to State 5

A data source may fail a call to DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
unexpectedly. It is important to note that if an application requests the User Interface be
suppressed, and the data source returns a code of TWRC_CHECKSTATUS, this means only
that User Interface suppression was not possible. The transition to State 5 still occurred. If the
application does not like this condition, then it may call MSG_DISABLEDS to close the data
source without further user interaction. A return code of TWRC_FAILURE indicates that the
transition to State 5 has not occurred.

Failure During State 6 or 7

It is important to be aware that when an error occurs during image transfer, a state transition to
State 5 is not implicit. A call to DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET or
MSG_ENDXFER is required for a state transition back to State 5. If an applications calls
MSG_DISABLEDS immediately after such a failure without first making the required calls to
DAT_PENDINGXFERS, the resulting behavior of the data source will not be predictable. The
data source should fail any call to MSG_DISABLEDS outside of State 5.

Chapter 3

3-62 TWAIN 1.9a Specification

Requirements for an Application to be TWAIN-Compliant
To be compliant with TWAIN 1.9 and higher, all Sources must support both UI and
programmatic control. UI control is the traditional method of control used when an
Application enables a Source with DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS (ShowUI == TRUE). Programmatic control implies that an Application will
not use a Source’s UI, but will control it directly (ShowUI == FALSE). Application writers have
long requested the ability to programmatically control Sources, so that they can present their
own UI’s, offering the user a common look and feel no matter what Source is currently in use.
The following lists of triplets and capabilities map out the minimum required set of features
that a Source must offer programmatically to be TWAIN compliant. Sources, though, are
strongly encouraged to go beyond this list and implement as many of their capabilities as
possible for programmatic access.

This list is organized by versions of TWAIN to help Source writers decide which version they
wish to support. It is also intended for Applications writers, who can use this information to
identify the real level of TWAIN support provided by a Source if its reported version is not
matched by the items in this list.

TWAIN 1.9 Sources must support all TWAIN 1.8 required features and the following:

Operations

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY – this operation is
only required for mid- and high-volume scanners. It is strongly recommended for other
devices since it allows a way for an application to create predefined session setups for devices
that also include settings for custom features. Note that applications that support this
operation must also support DAT_CUSTOMDSDATA.

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORTED

If DG_CONTROL / DAT_EXTIMAGEINFO is supported, then the following TWEI_ values
must be reported:

TWEI_DOCUMENTNUMBER
TWEI_PAGENUMBER
TWEI_CAMERA
TWEI_FRAMENUMBER
TWEI_FRAME
TWEI_PIXELFLAVOR

If DG_AUDIO is supported, then ACAP_XFERMECH must be available.

Capabilities

CAP_UICONTROLLABLE – Sources must provide the ability to run without their internal GUI,
which means that this capability must report TRUE.

TWAIN 1.8 Sources must support all TWAIN 1.7 required features and the following:

No new requirements were added in this version.

 Application Implementation

TWAIN 1.9a Specification 3-63

TWAIN 1.7 Sources must support all TWAIN 1.6 required features and the following:

Operations

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORTED – This triplet was
introduced in 1.7, and should have been made mandatory, but was not. Sources that support
1.7 are strongly encouraged to support this operation, but it is not a mandatory requirement.

TWAIN 1.6 Sources must support all TWAIN 1.5 required features and the following:

Capabilities

CAP_DEVICEONLINE – This capability is required to physically prove that the device is
powered up and available.

TWAIN 1.5 Sources must support the following:

Operations

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

DG_CONTROL / DAT_STATUS / MSG_GET

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

DG_CONTROL / DAT_XFERGROUP / MSG_GET

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Chapter 3

3-64 TWAIN 1.9a Specification

Capabilities

CAP_SUPPORTEDCAPS MSG_GET required

CAP_XFERCOUNT All MSG_* operations required

ICAP_COMPRESSION All MSG_GET* operations required

ICAP_BITDEPTH All MSG_* operations required

ICAP_BITORDER All MSG_* operations required

ICAP_PLANARCHUNKY All MSG_GET* operations required

ICAP_PHYSICALHEIGHT All MSG_GET* operations required

ICAP_PHYSICALWIDTH All MSG_GET* operations required

ICAP_PIXELFLAVOR All MSG_GET* operations required

ICAP_PIXELTYPE All MSG_* operations required

ICAP_UNITS All MSG_* operations required

ICAP_XFERMECH All MSG_* operations required

ICAP_XRESOLUTION All MSG_* operations required

ICAP_YRESOLUTION All MSG_* operations required

All Sources must implement the advertised features supported by their devices. They must
make these features available to applications via the TWAIN protocol. For example, a Source
that’s connected to a device that has an ADF must support DG_CONTROL /
DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:

CAP_FEEDERENABLED
CAP_FEEDERLOADED

and DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT,MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_AUTOFEED

If the ADF also supports ejecting and rewinding of pages, then the Source should also support
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_CLEARPAGE
CAP_REWINDPAGE

TWAIN 1.9a Specification 4-65

4
Advanced

Application Implementation

Using TWAIN to acquire a raster image from a device is relatively simple to implement as
demonstrated in Chapter 3. However, TWAIN also allows application developers to go beyond
the simple acquisition of a single image in Native (DIB or PICT) format. These more advanced
topics are discussed in this chapter. They include:

Chapter Contents
Capabilities 65
Options for Transferring Data 79
The Image Data and Its Layout 87
Transfer of Multiple Images 90
Transfer of Compressed Data 96
Alternative User Interfaces 100
Grayscale and Color Information for an Image 103
Contrast, Brightness, and Shadow Values 105

Capabilities
Capabilities, and the power of an application to negotiate capabilities with the Source, give
control to TWAIN-compliant applications. In Chapter 3, you saw the negotiation of one
capability, CAP_XFERCOUNT. This capability was negotiated during State 4 as is always the
case unless delayed negotiation is agreed to by both the application and Source. In fact, there is
much more to know about capabilities.

Chapter 4

4-66 TWAIN 1.9a Specification

Capability Values

Several values are used to define each capability. As seen in Chapter 9, TWAIN defines a
Default Value and a set of Allowed Values for each of the capabilities. The application is not
able to modify the Default Value. However, it is able to limit the values offered to a user to a
subset of the Allowed Values and to select the capability’s Current Value.

Default Value

When a Source is opened, the Current Values for each of its capabilities are set to the TWAIN
Default Values listed in Chapter 9. If no default is defined by TWAIN, the Source will select a
value for its default. An application can return a capability to its TWAIN-defined default by
issuing a DG_CONTROL / DAT_CAPABILITY / MSG_RESET operation.

Although TWAIN defines defaults for many of the capabilities, a Source may have a different
value that it would prefer to use as its default because it would be more efficient. For example,
the Source may normally use a 0 bit in a black and white image to indicate white. However, the
default for ICAP_PIXELFLAVOR is TWPF_CHOCOLATE which states that a 0 represents
black. Although the TWAIN default is TWPF_CHOCOLATE, the Source’s preferred default
would be TWPF_VANILLA. When the application issues a DG_CONTROL /
DAT_CAPABILITY / MSG_GETDEFAULT operation, the Source returns information about its
preferred defaults. The Source and application may be able to negotiate a more efficient
transfer based on this information.

Note that this does not imply that the TWAIN defaults should be completely disregarded.
When trying to resolve the conflict between the “preferred” value of a particular data source
capability and the TWAIN-specified default, it should be considered that the problem is similar
to storing and restoring image attributes from session to session. It is reasonable to assume that
a data source will want to store the current values for some capabilities to be restored as the
current values in a future session. It is then also reasonable to expect that these restored values
will be reflected as the current settings for the appropriate capabilities. While storing settings is
only really useful for image attributes (the data source would not store the value of
ICAP_PIXELFLAVOR, but it might store the current ICAP_RESOLUTION), it should be stated
that preferred values of a data source are to be treated in the same manner.

At the time of loading the data source, all current values for the appropriate capabilities would
be set to values that have either been restored from a previous session, or those that are
“preferred” by the data source. This current value will remain until it has been explicitly
changed by the calling application, or that application issues a MSG_RESET.

These are best illustrated using examples, since not all capabilities are suitable for preferred
values, and most are not suitable to be stored and restored across multiple scanning sessions.

Example 1:
Scan Parameters are stored in one session and restored in another

1. User configures the data source User Interface with the following parameters: 4x6 inch
image in 24-bit at 200 DPI X and Y resolution

2. User selects “Scan” and data source signals application to transfer.
3. Application acquires the image successfully.
4. Application disables the data source.
5. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth,

and Resolution.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-67

6. Data source reports to each inquiry the current values that were set by the user: 4x6
inch image in 24-bit at 200 DPI X and Y resolution.

7. Application closes the data source.

8. During close procedure, the data source stores the current Frame, Pixel Type, Bit Depth
and Resolution.

9. Application opens data source.

10. During open procedure, the data source restores current Frame, Pixel Type, Bit Depth
and Resolution.

11. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth,
and Resolution.

12. Data source reports to each inquiry the current values that were restored from previous
session: 4x6 inch image in 24-bit at 200 DPI X and Y resolution in one session.

Example 2:
Data Source represents the preferred Pixel Flavor without compromising TWAIN Defined
Default value

1. Application opens data source for the first time

2. Application inquires during State 4 about the Default Pixel Flavor

3. Data source reports that the default pixel flavor is TWPF_CHOCOLATE (see
Chapter 9).

4. Application inquires during State 4 about the current pixel flavor.

5. Data source reports that the current pixel flavor is TWPF_VANILLA (because this
device returns data in that gender natively).

6. Application issues reset to current pixel flavor.

7. During reset operation, data source changes current value to TWPF_CHOCOLATE and
prepares to invert data during transfer to accommodate the calling application request.

There is a condition where this logic falls apart. If the data source wants to return a
TW_ENUMERATION to a MSG_GET request for a constrained capability, there is a chance that
the Default value imposed by the TWAIN Specification (Chapter 9) will not exist within the
constrained set of values. In this case, the application should consider the default value to be
undefined. Common sense should dictate that the data source provide some default that is
reasonable within the currently available set of values for safety (a bad index in a
TW_ENUMERATION could be a disaster). When the default value is actually used (during
MSG_RESET) the constraints shall be lifted, and the original default value will once again exist
and be defined. (See next section on Constrained Capabilities about MSG_RESET) This is only
a problem with a TW_ENUMERATION container, since it contains an index to the default.

Current Value

The application may request to set the Current Value of a capability. If the Source’s user
interface is displayed, the Current Value should be reflected (perhaps by highlighting). If the
application sets the Current Value, it will be used for the acquire and transfer unless the user or
an automatic Source process changes it. The application can determine if changes were made
by checking the Current Value during State 6.

Chapter 4

4-68 TWAIN 1.9a Specification

To determine just the capability’s Current Value, use DG_CONTROL / DAT_CAPABILITY /
MSG_GETCURRENT. To determine both the Current Value and the Available Values, use the
DG_CONTROL / DAT_CAPABILITY / MSG_GET operation. For example, you could do a
MSG_GET on ICAP_PIXELTYPE and the Source might return a TW_ENUMERATION
container containing TWPT_BW, TWPT_GRAY, and TWPT_RGB as Available Values.

To set the Current Value:
Use DG_CONTROL / DAT_CAPABILITY / MSG_SET and one of the following containers:

• TWON_ONEVALUE: Place the desired value in TW_ONEVALUE.Item.
• TWON_ARRAY: Place only the desired items in TW_ARRAY.ItemList.

These must be a subset of the items returned by the Source from a MSG_GET operation.

It is also possible to set Current Values using the TW_ENUMERATION and TW_RANGE
containers. See the Available Values information for details.

Available Values

To limit the settings the Source can use during the acquire and transfer process, the application
may be able to restrict the Available Values. The Source should not use a value outside these
values. These restrictions should be reflected in the Source’s user interface so unavailable
values are not offered to the user.

For example, if the MSG_GET operation on ICAP_PIXELTYPE indicates the Source supports
TWPT_BW, TWPT_GRAY, and TWPT_RGB images and the application only wants black and
white images, it can request to limit the Available Values to black and white.

To limit the Available Values:
Use DG_CONTROL / DAT_CAPABILITY / MSG_SET and one of the following containers:

• TWON_ENUMERATION: Place only the desired values in the
TW_ENUMERATION.ItemList field. The Current Value can also be set at this time
by setting the CurrentIndex to point to the desired value in the ItemList.

• TWON_RANGE: Place only the desired values in the TW_RANGE fields. The
current value can also be set by setting the CurrentValue field.

Note that TW_ONEVALUE and TW_ARRAY containers cannot be used to limit the Available
Values.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-69

Capability Negotiation

The negotiation process consists of three basic parts:

1. The application determines which capabilities a Source supports

2. The application sets the supported capabilities as desired

3. The application verifies that the settings were accepted by the Source

Negotiation (Part 1)
Application Determines Which Capabilities the Source Supports

Step 1
Application allocates a TW_CAPABILITY structure and fills its fields as follows:

• Cap = the CAP_ or ICAP_ name for the capability it is interested in
• ConType = TWON_DONTCARE16
• hContainer = NULL

Step 2
Application uses the TW_CAPABILITY structure in a DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation.

Step 3
The Source examines the Cap field to see if it supports the capability. If it does, it creates
information for the application. In either case, it sets its Return Code appropriately.

Step 4
Application examines the Return Code, and maybe the Condition Code, from the
operation.

If TWRC_SUCCESS then the Source does support the capability and
• The ConType field was filled by the Source with a container identifier

(TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE, or
TWON_RANGE)

• The Source allocated a container structure of ConType and referenced the
hContainer field to this structure. It then filled the container with values
describing the capability’s Current Value, Default Value, and Available Values.

Based on the type of container and its contents (whose type is indicated by it ItemType
field), the application can read the values. The application must deallocate the
container.
If TWRC_FAILURE and TWCC_CAPUNSUPPORTED

• Source does not support this capability

The application can repeat this process for every capability it wants to learn about. If the
application really only wants to get the Current Value for a capability, it can use the
MSG_GETCURRENT operation instead. In that case, the ConType will just be
TWON_ONEVALUE or TWON_ARRAY but not TWON_RANGE or
TWON_ENUMERATION.

Chapter 4

4-70 TWAIN 1.9a Specification

Note: The capability, CAP_SUPPORTEDCAPS, returns a list of capabilities that a Source
supports. But it doesn’t indicate whether the supported capabilities can be negotiated,
If the Source does not support the CAP_SUPPORTEDCAPS capabilities, it returns
TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Negotiation (Part 2)
The Application Sets the Supported Capability as Desired

Step 1
Application allocates a TW_CAPABILITY structure and fills its fields as follows:

• Cap = the CAP_ , ICAP_, or ACAP_name for the capability it is interested in
• ConType = TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE or

TWON_RANGE (Refer to Chapter 9 to see each capability and what type(s) of
container may be used to set a particular capability.)

• hContainer = The application must allocate a structure of type ConType and
reference this field to it. (See the next step.)

Step 2
Application allocates a structure of type ConType and fills it. Based on values received
from the Source during the MSG_GET, it can specify the desired Current Value and
Available Values that it wants the Source to use. The application should not attempt to set
the Source’s Default Value, just put an appropriate constant in that field (ex.
TWON_DONTCARE32).

Note: The application is responsible for deallocating the container structure when the
operation is finished.

Step 3
Send the request to the Source using DG_CONTROL / DAT_CAPABILITY / MSG_SET.

Negotiation (Part 3)
The Application MUST Verify the Result of Their Request

Step 1
Even if a Source supports a particular capability, it is not required to support the setting of
that capability. The application must examine the Return Code from the MSG_SET request
to see what took place.

If TWRC_SUCCESS then the Source set the capability as requested.
If TWRC_CHECKSTATUS then

• The Source could not use one or more of your exact values. For instance, you
asked for a value of 310 but it could only accept 100, 200, 300, or 400. Your
request was within its legitimate range so it rounded it to its closest valid setting.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-71

Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the
current and available settings at this time. This is the only way to determine if the Source’s
choice was acceptable to your application.

If TWRC_FAILURE / TWCC_BADVALUE then
• Either the Source is not granting your request to set or restrict the value.
• Or, your requested values were not within its range of legitimate values. It may

have attempted to set the value to its closest available value.
Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the
current and available settings at this time. This is the only way to determine if your
application can continue without your requested values.

You can repeat the setting and verifying processes for every capability of interest to your
application. Remember, your application must deallocate all container structures.

The Most Common Capabilities

TWAIN defines over 150 capabilities. Although the number may seem overwhelming, it is
easier to handle if you recognize that some of the capabilities are more commonly used. Here
are some of these capabilities:

Basic Capabilities
Units
The ICAP_UNITS capability determines the unit of measure which will be used by the
Source. The default is inches but centimeters, pixels, etc. are allowed. This capability’s
value is used when measuring several other values in capabilities and data structures
including:

ICAP_PHYSICALHEIGHT,
ICAP_PHYSICALWIDTH,
ICAP_XNATIVERESOLUTION,
ICAP_YNATIVERESOLUTION,
ICAP_XRESOLUTION,
ICAP_YRESOLUTION,
TW_FRAME,
TW_IMAGEINFO.XResolution,
TW_IMAGEINFO.YResolution

Sense of the Pixel
The ICAP_PIXELFLAVOR specifies how a bit of data should be interpreted when
transferred from Source to application. The default is TWPF_CHOCOLATE which means a
0 indicates black (or the darkest color). The alternative, TWPF_VANILLA, means a 0
indicates white (or the lightest color).

Resolution
The image resolution is reported in the TW_IMAGEINFO structure. To inquire or set the
Source’s resolution, use ICAP_XRESOLUTION and ICAP_YRESOLUTION.
Refer also to ICAP_XNATIVERESOLUTION and ICAP_YNATIVERESOLUTION.

Chapter 4

4-72 TWAIN 1.9a Specification

Image Type Capabilities
Types of Pixel
The application should negotiate ICAP_PIXELTYPE and ICAP_BITDEPTH unless it can
handle all pixel types at all bit depths. The allowed pixel types are: TWPT_BW,
TWPT_GRAY, TWPT_RGB, TWPT_PALETTE, TWPT_CMY, TWPT_CMYK, TWPT_YUV,
TWPT_YUVK, and TWPT_CIEXYZ.

Depth of the Pixels (in bits)
A pixel type such as TWPT_BW allows only 1 bit per pixel (either black or white). The
other pixel types may allow a variety of bits per pixel (4-bit or 8-bit gray, 8-bit or 24-bit
color). Be sure to set the ICAP_PIXELTYPE first, then set the ICAP_BITDEPTH.

Parameters for Acquiring the Image
Exposure
Several capabilities can influence this. They include ICAP_BRIGHTNESS,
ICAP_CONTRAST, ICAP_SHADOW, ICAP_HIGHLIGHT, ICAP_GAMMA, and
ICAP_AUTOBRIGHT.

Scaling
To instruct a Source to scale an image before transfer, refer to ICAP_XSCALING and
ICAP_YSCALING.

Rotation
To instruct a Source to rotate the image before transfer, refer to ICAP_ROTATION and
ICAP_ORIENTATION.

Constrained Capabilities and Message Responses

There is some confusion about how the data source should respond to various capability
queries when the application has imposed constraints upon the supported values. The
following guidelines should help clarify the situation.

MSG_RESET

It is known that this call resets the current value of the requested capability to the default. It
must also be stated that this call will also reset any application imposed constraints upon the
requested capability.

MSG_GETCURRENT, and MSG_GETDEFAULT

It is intuitive to assume that this message should not be supported by capabilities that have no
Current or Default value. However, the specification says otherwise in Chapter 9 (a good
example is ICAP_SUPPORTEDCAPS). In this case, it makes sense to simply respond to these
messages in the same manner as MSG_GET.

It can also be assumed that it is more intuitive for a data source to respond to this capability
with a TW_ONEVALUE container in all cases that a TW_ONEVALUE container is allowed.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-73

MSG_GET

If an application has constrained the current capability, then the data source response to this
message should reflect those constraints. Otherwise, this should respond with all the values
that the data source supports. Of course, the number of values that can be placed in the
response are restricted by the allowed containers for the particular current capability outlined
in Chapter 9.

MSG_SET

As indicated in the Chapter 7 description of this capability triplet:

“Current Values are set when the container is a TW_ONEVALUE or TW_ARRAY. Available and
Current Values are set when the container is a TW_ENUMERATION or TW_RANGE.”

To further clarify this operation, it should be stated that when an application imposes a
constraint, the data source must consider the set of supported values and the set of requested
constraints. The resulting set of values shall contain only the values that are shared by those
supported and those requested.

A condition may arise after constraints are imposed, where the default value is no longer
within the set of supported values. When using a TW_ENUMERATION, the reported default
index should be changed by the data source to something that falls within the new constrained
set. This is simply a precaution to ensure it is a valid index. In this case, the Default index in a
TW_ENUMERATION loses meaning and should be ignored by applications, since
MSG_RESET shall cause the constraints to be eliminated.

Capability Containers in Code Form

Capability information is passed between application and Source by using data structures
called containers: TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE.
The actions needed to create (pack) and read (unpack) containers are illustrated here in the
following code segments. Containers are flexible in that they can be defined to contain one of
many types of data. Only one ItemType (TWTY_xxxx) is illustrated per Container
(TWON_xxxx) here. Refer to the toolkit disk for complete packing and unpacking utilities that
you can use with containers.

Reading (unpacking) a Container from a MSG_GET Operation
//---
//Example of DG_CONTROL / DAT_CAPABILITY / MSG_GET
//---
TW_CAPABILITY twCapability;
TW_INT16 rc;

//Setup TW_CAPABILITY Structure
twCapability.Cap = Cap; //Fill in capability of interest
twCapability.ConType = TWON_DONTCARE16;
twCapability.hContainer = NULL;

Chapter 4

4-74 TWAIN 1.9a Specification

//Send the Triplet
rc = (*pDSM_Entry)(&AppID,

&SourceID,
DG_CONTROL,
DAT_CAPABILITY,
MSG_GET,

(TW_MEMREF)&twCapability);

//Check return code
if (rc == TWRC_SUCCESS)

{
//Switch on Container Type

switch (twCapability.ConType)
{

//-----ENUMERATION
case TWON_ENUMERATION:
{
pTW_ENUMERATION pvalEnum;
TW_UINT16 valueU16;
TW_UINT16 index;
pvalEnum = (pTW_ENUMERATION)GlobalLock(twCapability.hContainer);
NumItems = pvalEnum->NumItems;
CurrentIndex = pvalEnum->CurrentIndex;
DefaultIndex = pvalEnum->DefaultIndex;

for (index = 0; index < pvalEnum->NumItems; index++)
{

if (pvalEnum->ItemType == TWTY_UINT16)
{

valueU16 = ((TW_UINT16)(pvalEnum->ItemList[index*2]));
//Store Item Value

}
}
GlobalUnlock(twCapability.hContainer);
}
break;

//-----ONEVALUE
case TWON_ONEVALUE:
{
pTW_ONEVALUE pvalOneValue;
TW_BOOL valueBool;

pvalOneValue = (pTW_ONEVALUE)GlobalLock(twCapability.hContainer);
if (pvalOneValue->ItemType == TWTY_BOOL)
{

valueBool = (TW_BOOL)pvalOneValue->Item;
//Store Item Value

}
GlobalUnlock(twCapability.hContainer);
}
break;

 Advanced Application Implementation

TWAIN 1.9a Specification 4-75

//-----RANGE
case TWON_RANGE:
{
pTW_RANGE pvalRange;
pTW_FIX32 pTWFix32;
float valueF32;
TW_UINT16 index;

pvalRange = (pTW_RANGE)GlobalLock(twCapability.hContainer);

if ((TW_UINT16)pvalRange->ItemType == TWTY_FIX32)
{

pTWFix32 = &(pvalRange->MinValue);
valueF32 = FIX32ToFloat(*pTWFix32);
//Store Item Value

pTWFix32 = &(pvalRange->MaxValue);
valueF32 = FIX32ToFloat(*pTWFix32);
//Store Item Value

pTWFix32 = &(pvalRange->StepSize);
valueF32 = FIX32ToFloat(*pTWFix32);
//Store Item Value

}
GlobalUnlock(twCapability.hContainer);

}
break;

//-----ARRAY
case TWON_ARRAY:
{
pTW_ARRAY pvalArray;
TW_UINT16 valueU16;
TW_UINT16 index;

pvalArray = (pTW_ARRAY)GlobalLock(twCapability.hContainer);

for (index = 0; index < pvalArray->NumItems; index++)
{

if (pvalArray->ItemType == TWTY_UINT16)
{

valueU16 = ((TW_UINT16)(pvalArray->ItemList[index*2]));
//Store Item Value

}
}
GlobalUnlock(twCapability.hContainer);

}
break;

} //End Switch Statement

GlobalFree(twCapability.hContainer);

} else {
//Capability MSG_GET Failed check Condition Code

}

Chapter 4

4-76 TWAIN 1.9a Specification

/**
* Fix32ToFloat
* Convert a FIX32 value into a floating point value.
**/

float FIX32ToFloat (TW_FIX32 fix32)
{

float floater;

floater = (float)fix32.Whole + (float)fix32.Frac / 65536.0;
return floater;

}

Creating (packing) a Container for a MSG_SET Operation
//---
//Example of DG_CONTROL / DAT_CAPABILITY / MSG_SET
//---
TW_CAPABILITY twCapability;
TW_INT16 rc;
TW_UINT32 NumberOfItems;

twCapability.Cap = Cap; //Insert Capability of Interest
twCapability.ConType = Container;

//Use TWON_ONEVALUE or TWON_ARRAY to set current value
//Use TWON_ENUMERATION or TWON_RANGE to limit available values

switch (twCapability.ConType)
{

//-----ENUMERATION
case TWON_ENUMERATION:
{
pTW_ENUMERATION pvalEnum;

//The number of Items in the ItemList
NumberOfItems = 2;

//Allocate memory for the container and additional ItemList
// entries
twCapability.hContainer = GlobalAlloc(GHND,

(sizeof(TW_ENUMERATION) + sizeof(TW_UINT16) * (NumberOfItems)));
pvalEnum = (pTW_ENUMERATION)GlobalLock(twCapability.hContainer);

pvalEnum->NumItems = 2 //Number of Items in ItemList
pvalEnum->ItemType = TWTY_UINT16;
((TW_UINT16)(pvalEnum->ItemList[0])) = 1;
((TW_UINT16)(pvalEnum->ItemList[1])) = 2;

GlobalUnlock(twCapability.hContainer);
}
break;

 Advanced Application Implementation

TWAIN 1.9a Specification 4-77

//-----ONEVALUE
case TWON_ONEVALUE:
{
pTW_ONEVALUE pvalOneValue;

twCapability.hContainer = GlobalAlloc(GHND, sizeof(TW_ONEVALUE));
pvalOneValue = (pTW_ONEVALUE)GlobalLock(twCapability.hContainer);

(TW_UINT16)pvalOneValue->ItemType = TWTY_UINT16;
(TW_UINT16)pvalOneValue->Item = 1;

GlobalUnlock(twCapability.hContainer);
}
break;

//-----RANGE
case TWON_RANGE:
{
pTW_RANGE pvalRange;
TW_FIX32 TWFix32;
float valueF32;

twCapability.hContainer = GlobalAlloc(GHND, sizeof(TW_RANGE));
pvalRange = (pTW_RANGE)GlobalLock(twCapability.hContainer);

(TW_UINT16)pvalRange->ItemType = TWTY_FIX32;
valueF32 = 100;
TWFix32 = FloatToFIX32 (valueF32);
pvalRange->MinValue = *((pTW_INT32) &TWFix32);
valueF32 = 200;
TWFix32 = FloatToFIX32 (valueF32);
pvalRange->MaxValue = *((pTW_INT32) &TWFix32);

GlobalUnlock(twCapability.hContainer);
}
break;

//-----ARRAY
case TWON_ARRAY:
{
pTW_ARRAY pvalArray;

//The number of Items in the ItemList
NumberOfItems = 2;

//Allocate memory for the container and additional ItemList entries
twCapability.hContainer = GlobalAlloc(GHND,

(sizeof(TW_ARRAY) + sizeof(TW_UINT16) * (NumberOfItems)));
pvalArray = (pTW_ARRAY)GlobalLock(twCapability.hContainer);

(TW_UINT16)pvalArray->ItemType = TWTY_UINT16;
(TW_UINT16)pvalArray->NumItems = 2;
((TW_UINT16)(pvalArray->ItemList[0])) = 1;
((TW_UINT16)(pvalArray->ItemList[1])) = 2;

GlobalUnlock(twCapability.hContainer);
}
break;

}

Chapter 4

4-78 TWAIN 1.9a Specification

//-----MSG_SET
rc = (*pDSM_Entry)(&AppID,

&SourceID,
DG_CONTROL,
DAT_CAPABILITY,
MSG_SET,
(TW_MEMREF)&twCapability);

GlobalFree(twCapability.hContainer);
switch (rc)
{

case TWRC_SUCCESS:
//Capability's Current or Available value was set as specified

case TWRC_CHECKSTATUS:
//The Source matched the specified value(s) as closely as possible
//Do a MSG_GET to determine the settings made

case TWRC_FAILURE:
//Check the Condition Code for more information

}

/**
* FloatToFix32
* Convert a floating point value into a FIX32.
**/

TW_FIX32 FloatToFix32 (float floater)
{

TW_FIX32 Fix32_value;
TW_INT32 value = (TW_INT32) (floater * 65536.0 + 0.5);
Fix32_value.Whole = value >> 16;
Fix32_value.Frac = value & 0x0000ffffL;
return (Fix32_value);

}

Delayed Negotiation - Negotiating Capabilities After State 4

Applications may inquire about a Source’s capability values at any time during the session with
the Source. However, as a rule, applications can only request to set a capability during State 4.
The rationale behind this restriction is tied to the display of the Source’s user interface when the
Source is enabled. Many Sources will modify the contents of their user interface in response to
some of the application’s requested settings. These user interface modifications prevent the
user from selecting choices that do not meet the application’s requested values. The Source’s
user interface is never displayed in State 4 so changes can be made without the user’s
awareness. However, the interface may be displayed in States 5 through 7.

Some capabilities have no impact on the Source’s user interface and the application may really
want to set them later than State 4. To allow delayed negotiation, the application must request,
during State 4, that a particular capability be able to be set later (during States 5 or 6). The
Source may agree to this request or deny it. The request is negotiated by the application with
the Source by using the DG_CONTROL / DAT_CAPABILITY operations on the
CAP_EXTENDEDCAPS capability.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-79

On the CAP_EXTENDEDCAPS capability, the DG_CONTROL / DAT_CAPABILITY
operations:

MSG_GET
Indicates all capabilities that the Source is willing to negotiate in State 5 or 6.

MSG_SET
Specifies which capabilities the application wishes to negotiate in States 5 or 6.

MSG_GETCURRENT
Provides a list of all capabilities which the Source and application have agreed to allow to
be negotiated in States 5 or 6.

As with any other capability, if the Source does not support negotiating
CAP_EXTENDEDCAPS, it will return the Return Code TWRC_FAILURE with the Condition
Code TWCC_CAPUNSUPPORTED.

If an application attempts to set a capability in State 5 or 6 and the Source has not previously
agreed to this arrangement, the operation will fail with a Return Code of TWRC_FAILURE and
a Condition Code of TWCC_SEQERROR.

If an application does not use the Source’s user interface but presents its own, the application
controls the state of the Source explicitly. If the application wants to set the value of any
capability, it returns the Source to State 4 and does so. Therefore, an application using its own
user interface will probably not need to use CAP_EXTENDEDCAPS.

Options for Transferring Data
As discussed previously, there are three modes defined by TWAIN for transferring data:

• Native
• Disk File
• Buffered Memory

A Source is required to support Native and Buffered Memory transfers.

Native Mode Transfer

The use of Native mode, the default mode, for transferring data was covered in Chapter 3.
There is one potential limitation that can occur in a Native mode transfer. That is, there may
not be an adequately large block of RAM available to hold the image. This situation will not be
discovered until the transfer is attempted when the application issues the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation.

Chapter 4

4-80 TWAIN 1.9a Specification

When the lack of memory appears, the Source may respond in one of several ways. It can:

• Simply fail the operation.
• Clip the image to make it fit in the available RAM - The Source should notify the user

that the clipping operation is taking place due to limited RAM. The clipping should
maintain both the aspect ratio of the selected image and the origin (upper-left).

• Interact with the user to allow them to resize the image or cancel the capture.

The Return Code / Condition Code returned from the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation may indicate one of these actions occurred.

If the Return Code is TWRC_XFERDONE:

This indicates the transfer was completed and the session is in State 7. However, it does not
guarantee that the Source did not clip the image to make it fit. Even if the application issued a
DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation prior to the transfer to determine the
image size, it cannot assume that the ImageWidth and ImageLength values returned from that
operation really apply to the image that was ultimately transferred. If the dimensions of the
image are important to the application, the application should always check the actual
transferred image size after the transfer is completed. To do this:

1. Execute a DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation to
move the session from State 7 to State 6 (or 5).

2. Determine the actual size of the image that was transferred:
a. On Windows - Read the DIB header
b. On Macintosh - Check the picFrame in the Picture

If the Return Code is TWRC_CANCEL:

The acquisition was canceled by the user. The session is in State 7. Execute a DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation to move the session from State 7 to State 6
(or 5).

If the Return Code is TWRC_FAILURE:

Check the Condition Code to determine the cause of the failure. The session is in State 6. No
memory was allocated for the DIB or PICT. The image is still pending. If lack of memory was
the cause, you can try to free additional memory or discard the pending image by executing
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-81

Disk File Mode Transfer

Beginning with version 1.9, there are now two file transfer mechanisms available. Windows
developers may continue to use the TWSX_FILE option. Macintosh developers must use
TWSX_FILE2, instead of TWSX_FILE, in order to correctly address image and audio files in the
newer versions of the operating system.

Determine if a Source Supports the Disk File Mode

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

• Set the TW_CAPABILITY’s Cap field to ICAP_XFERMECH.

• The Source returns information about the transfer modes it supports in the container
structure pointed to by the hContainer field of the TW_CAPABILITY structure. The disk
file mode is identified as TWSX_FILE or TWSX_FILE2. Sources are not required to
support Disk File Transfer so it is important to verify its support.

After Verifying Disk File Transfer is Supported, Set Up the Transfer
During State 4:

• Set the ICAP_XFERMECH to TWSX_FILE or TWSX_FILE2. Use the DG_CONTROL
/ DAT_CAPABILITY / MSG_SET operation.

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine
which file formats the Source can support. Set TW_CAPABILITY.Cap to
ICAP_IMAGEFILEFORMAT and execute the MSG_GET. The Source returns the
supported format identifiers which start with TWFF_ and may include TWFF_PICT,
TWFF_BMP, TWFF_TIFF, etc. They are listed in the TWAIN.H file and in the
Constants section of Chapter 8.

During States 4, 5, or 6:

To set up the transfer the DG_CONTROL / DAT_SETUPFILEXFER or DG_CONTROL /
DAT_SETUPFILEXFER2 operations of MSG_GET, MSG_GETDEFAULT, and MSG_SET
can be used.

The data structure used in the DSM_Entry call is a TW_SETUPFILEXFER structure (for
DAT_SETUPFILEXFER, on Windows and pre-1.9 Macintosh Sources and Applications):

typedef struct {
TW_STR255 FileName; /* File to contain data */
TW_UINT16 Format; /* A TWFF_xxxx constant */
TW_HANDLE VrefNum; /* Used for Macintosh only */

} TW_SETUPFILEXFER, FAR *pTW_SETUPFILEXFER;

Macintosh developers must use the TW_SETUPFILEXFER2 structure (along with
DAT_SETUPFILEXFER2) for TWAIN versions 1.9 and higher:

typedef struct {
TW_MEMREF FileName; /* File to contain data */
TW_UINT16 FileNameType; /* TWTY_STR1024 or TWTY_UNI512 */
TW_UINT16 Format; /* A TWFF_xxxx constant */
TW_HANDLE VrefNum; /* Used for Macintosh only */
TW_UINT32 parID; /* Used for Macintosh only */

} TW_SETUPFILEXFER2, FAR *pTW_SETUPFILEXFER2;

Chapter 4

4-82 TWAIN 1.9a Specification

The application could use the MSG_GETDEFAULT operation to determine the default file
format and filename (TWAIN.TMP or TWAIN.AUD in the current directory). If
acceptable, the application could just use that file. However, most applications prefer to set
their own values for filename and format. The MSG_SET operation allows this. It is done
during State 6. To set your own filename and format, do the following:

1. Allocate the required TW_SETUPFILEXFER or TW_SETUPFILEXFER2 structure.
Then, fill in the appropriate fields:
a. FileName – the desired filename. On Windows, be sure to include the complete

path name. If using the TW_SETUPFILEXFER2 structure, be sure to allocate the
space needed for a TWTY_STR1024 or a TWTY_UNI512 first.

b. FileNameFormat – for the TW_SETUPFILEXFER2 structure only. This field
identifies what the FileName memory reference is pointing to: either a 1024-
character ANSI string, or a 512-character Unicode string.

c. Format – the constant for the desired, and supported, format (TWFF_xxxx). If you
set it to an unsupported format, the operation returns TWRC_FAILURE /
TWCC_BADVALUE and the Source resets itself to write data to the default file.

d. VRefNum – On Macintosh, write the file’s volume reference number. On
Windows, fill in the field with a TWON_DONTCARE16.

e. ParID – On Macintosh, write the file’s parent directory ID. On Windows, fill in the
field with a TWON_DONTCARE16.

2. Invoke the DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET, as appropriate.

Execute the Transfer into the File

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET operation.:

Use the following operation: DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

This operation does not have an associated data structure but just uses NULL for the pData
parameter in the DSM_Entry call.

• If the application has not specified a filename (during the setup) - the Source will use
either its default file or the last file information it was given.

• If the file specified by the application does not exist - the Source should create it.

• If the file exists but already has data in it - the Source should overwrite the existing data.
Notice, if you are transferring multiple files and using the same file name each time, you
will overwrite the data unless you copy it to a different filename between transfers.

Note: The application cannot abort a Disk File transfer once initiated. However, the Source’s
user interface may allow the user to cancel the transfer.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-83

Following execution, be sure to check the Return Code:

TWRC_XFERDONE: File was written successfully. The application needs to invoke the
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the session back
to State 6 (or 5) as was illustrated in Chapter 3.

TWRC_CANCEL: The user canceled the transfer. The contents of the file are undefined.
Invoke DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the
session back to State 6 (or 5) as was illustrated in Chapter 3.

TWRC_FAILURE
The Source remained in State 6.
The contents of the file are undefined.
The image is still pending. To discard it, use DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER.

Check the Condition Code to determine the cause of the failures. The alternatives are:

TWCC_BADDEST = Operation aimed at invalid Source

TWCC_OPERATIONERROR = Either the file existed but could not be accessed or a
system error occurred during the writing

TWCC_SEQERROR = Operation invoked in invalid state (i.e. not 6)

Buffered Memory Mode Transfer

Set Capability Values for the Buffered Memory Mode, if Desired

Data is typically transferred in uncompressed format. However, if you are interested in
knowing if the Source can transfer compressed data when using the buffered memory mode,
perform a DG_CONTROL / DAT_CAPABILITY / MSG_GET on the ICAP_COMPRESSION.
The values will include TWCP_NONE (the default) and perhaps others such as
TWCP_PACKBITS, TWCP_JPEG ,etc. (See the list in the Constants section of Chapter 8.) More
information on compression is available later in this chapter in the section called Transfer of
Compressed Data.

Chapter 4

4-84 TWAIN 1.9a Specification

Set up the Transfer
During State 4:
Set the ICAP_XFERMECH to TWSX_MEMORY by using the DG_CONTROL /
DAT_CAPABILITY / MSG_SET operation.

During States 4, 5, or 6:
The DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation is used by the
application to determine what buffer sizes the Source wants to use during the transfer. The
Source might have more accurate information in State 6.
The data structure used in the DSM_Entry call is a TW_SETUPMEMXFER structure:

typedef struct {
TW_UINT32 MinBufSize /* Minimum buffer size in bytes */
TW_UINT32 MaxBufSize /* Maximum buffer size in bytes */
TW_UINT32 Preferred /* Preferred buffer size in bytes */

} TW_SETUPMEMXFER, FAR *pTW_SETUPMEMXFER;

The Source will fill in the appropriate values for its device.

Buffers Used for Uncompressed Strip Transfers

• The application is responsible for allocating and deallocating all memory used during the
buffered memory transfer.

• For optimal performance, create buffers of the Preferred size.

• In all cases, the size of the allocated buffers must be within the limits of MinBufSize to
MaxBufSize. If outside of these limits, the Source will fail the transfer operation with a
Return Code of TWRC_FAILURE / TWCC_BADVALUE.

• If using more than one buffer, all buffers must be the same size.

• Raster lines must be double-word aligned and padded with zeros is recommended .

Execute the Transfer Using Buffers

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation:

• Allocate one or more buffers of the same size. The best size is the one indicated by the
TW_SETUPMEMXFER.Preferred field. If that is impossible, be certain the buffer size is
between MinBufSize and MaxBufSize.

• Allocate the TW_IMAGEMEMXFER structure. It will be used in the DG_IMAGE /
DAT_IMAGEMEMXFER / MSG_GET operation.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-85

The TW_IMAGEMEMXFER structure looks like this:
typedef struct {

TW_UINT16 Compression;
TW_UINT32 BytesPerRow;
TW_UINT32 Columns;
TW_UINT32 Rows;
TW_UINT32 XOffset;
TW_UINT32 YOffset;
TW_UINT32 BytesWritten;
TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR *pTW_IMAGEMEMXFER;

Fill in the TW_IMAGEMEMXFER’s first field with TWON_DONTCARE16 and the following
six fields with TWON_DONTCARE32.

The TW_MEMORY structure embedded in there looks like this:
typedef struct {

TW_UINT32 Flags;
TW_UINT32 Length;
TW_MEMREF TheMem;

} TW_MEMORY, FAR *pTW_MEMORY;

Fill in the TW_MEMORY structure as follows:

Memory.Flags
Place TWMF_APPOWNS bit-wise ORed with TWMF_POINTER or TWMF_HANDLE

Memory.Length
The size of the buffer in bytes

Memory.TheMem
A handle or pointer to the memory buffer allocated above (depending on which one
was specified in the Flags field).

Following each buffer transfer, the Source will have filled in all the fields except Memory which
it uses as a reference to the memory block for the data.

The flow of the transfer of buffers is as follows:

Step 1
Buffered Memory transfers provide no embedded header information. Therefore, the
application must determine the image attributes. After receiving the MSG_XFERREADY,
i.e. while in State 6, the application issues the DG_IMAGE / DAT_IMAGEINFO /
MSG_GET and DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET operations to learn
about the image’s bitmap characteristics and the size and location of the original image on
the original page (before scaling or other processing). If additional information is desired,
use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

Step 2
The application issues DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET.

Chapter 4

4-86 TWAIN 1.9a Specification

Step 3
The application checks the Return Code.

If TWRC_SUCCESS:
Examine the TW_IMAGEMEMXFER structure for information about the buffer. If
you plan to reuse the buffer, copy the data to another location.
Loop back to Step 2 to get another buffer. Be sure to reinitialize the information in
the TW_IMAGEMEMXFER structure (including the Memory fields), if necessary.
Issue another DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation.

If TWRC_XFERDONE:
This is how the Source indicates it just transferred the last buffer successfully.
Examine the TW_IMAGEMEMXFER structure for information about the buffer.
Perhaps, copy the data to another location, as desired, then go to Step 4.

If TWRC_CANCEL:
The user aborted the transfer. The application must send a DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER as described in Chapter 3 to move from
State 7 to State 6 (or 5).

If TWRC_FAILURE:
Examine the Condition Code to determine the cause and handle it.
If the failure occurred during the transfer of the first buffer, the session is in State 6.
If the failure occurred on a subsequent buffer, the session is in State 7.
The contents of the buffer are invalid and the transfer of the buffer is still pending.
To abort it, use DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.

Step 4
Once the TWRC_XFERDONE has been returned, the application must send the
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to conclude the transfer. This
was described in Chapter 3 in the section called State 7 to 6 to 5 - Conclude the Transfer.

Note: The majority of Sources divide the image data into strips when using buffered
transfers. A strip is a horizontal band starting at the leftmost side of the image and
spanning the entire width but covering just a portion of the image length. The
application can verify that strips are being used if the information returned from the
Source in the TW_IMAGEMEMXFER structure’s XOffset field is zero and the
Columns field is equal to the value in the TW_IMAGEINFO structure’s ImageWidth
field.

An alternative to strips is the use of tiles although they are used by very few Sources. Refer to
the TW_IMAGEMEMXFER information in Chapter 8 for an illustration of tiles.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-87

The Image Data and Its Layout
The image which is transferred from the Source to the application has several attributes. Some
attributes describe the size of the image. Some describe where the image was located on the
original page. Still others might describe information such as resolution or number of bits per
pixel. TWAIN provides means for the application to learn about these attributes.

Users are often able to select and modify an image’s attributes through the Source’s user
interface. Additionally, TWAIN provides capabilities and operations that allow the application
to impact these attributes prior to acquisition and transfer.

Getting Information About the Image That will be Transferred

Before the transfer occurs, while in State 6, the Source can provide information to the
application about the actual image that it is about to transfer. Note, the information is lost once
the transfer takes place so the application should save it, if needed. This information can be
retrieved through two operations:

• DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
• DG_IMAGE / DAT_IMAGEINFO / MSG_GET

The area of an image to be acquired will always be a rectangle called a frame. There may be
one or more frames located on a page. Frames can be selected by the user or designated by the
application. The TW_IMAGELAYOUT structure communicates where the image was located
on the original page relative to the origin of the page. It also indicates, in its FrameNumber
field, if this is the first frame, or a later frame, to be acquired from the page.

The TW_IMAGELAYOUT structure looks like this:
typedef struct {

TW_FRAME Frame;
TW_UINT32 DocumentNumber;
TW_UINT32 PageNumber;
TW_UINT32 FrameNumber;
} TW_IMAGELAYOUT, FAR *pTW_IMAGELAYOUT;

The TW_FRAME structure specifies the values for the Left, Right, Top, and Bottom of the frame
to be acquired. Values are given in ICAP_UNITS.

Figure 4-1. TW_FRAME Structure

Chapter 4

4-88 TWAIN 1.9a Specification

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation communicates other attributes of
the image being transferred. The TW_IMAGEINFO structure looks like this:

typedef struct {
TW_FIX32 XResolution;
TW_FIX32 YResolution;
TW_INT32 ImageWidth;
TW_INT32 ImageLength;
TW_INT16 SamplesPerPixel;
TW_INT16 BitsPerSample[8];
TW_INT16 BitsPerPixel;
TW_BOOL Planar;
TW_INT16 PixelType;
TW_UINT16 Compression;
} TW_IMAGEINFO, FAR * pTW_IMAGEINFO;

Notice how the ImageWidth and ImageLength relate to the frame described by the
TW_IMAGELAYOUT structure.

Changing the Image Attributes

Normally, the user will select the desired attributes. However, the application may wish to do
this initially during State 4. For example, if the user interface will not be displayed, the
application may wish to select the frame. The application can use a DG_IMAGE /
DAT_IMAGELAYOUT / MSG_SET operation to define the area (frame) to be acquired.
Although, there is no corresponding DG_IMAGE / DAT_IMAGEINFO / MSG_SET operation,
the application can change those attributes by setting capabilities and the TW_IMAGELAYOUT
data structure.

Here are the relationships:

TW_IMAGEINFO fields Capability or data structure that impacts the attribute

XResolution ICAP_XRESOLUTION

YResolution ICAP_YRESOLUTION

ImageWidth TW_IMAGELAYOUT.TW_FRAME.Right - TW_FRAME.Left **

ImageLength TW_IMAGELAYOUT.TW_FRAME.Bottom - TW_FRAME.Top **

SamplesPerPixel ICAP_PIXELTYPE (i.e. TWPT_BW has 1, TWPT_RGB has 3)

BitsPerSample Calculated by BitsPerPixel divided by SamplesPerPixel

BitsPerPixel ICAP_BITDEPTH

Planar ICAP_PLANARCHUNKY

PixelType ICAP_PIXELTYPE

Compression ICAP_COMPRESSION

** ImageWidth and ImageLength are actually provided in pixels whereas TW_FRAME uses
ICAP_UNITS.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-89

Resolving Conflict Between ICAP_FRAMES, ICAP_SUPPORTEDSIZES, DAT_IMAGELAYOUT

Since there are several ways to negotiate the scan area, it becomes confusing when deciding
what should take precedence. It is logical to assume that the last method used to set the frame
will dictate the current frame. However, it may still be confusing to decide how that is
represented during a MSG_GET operation for any of the three methods. The following
behavior is suggested.

Note: Frame extents are only limited by ICAP_PHYSICALWIDTH and
ICAP_PHYSICALHEIGHT. Setting ICAP_SUPPORTEDSIZES does NOT imply a new
extent limitation. TWSS_xxxx sizes are simply predefined fixed frame sizes.

• If the frame is set in DAT_IMAGELAYOUT
! ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the

frame set in the DAT_IMAGELAYOUT call.
! ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current frame is set from ICAP_FRAMES
! DAT_IMAGELAYOUT shall respond with the dimensions of the current frame set in

ICAP_FRAMES
! ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current fixed frame is set from ICAP_SUPPORTEDSIZES
! DAT_IMAGELAYOUT shall respond to MSG_GET with the dimensions of the fixed

frame specified in ICAP_SUPPORTEDSIZES
! ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the

fixed frame specified in ICAP_SUPPORTEDSIZES

ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOUT,
DAT_IMAGEINFO

There is considerable confusion when trying to resolve the affect of Rotation and Orientation on
the current frames and image layout. After careful consideration of the specification it has been
concluded that ICAP_ROTATION and ICAP_ORIENTATION shall be applied after
considering ICAP_FRAMES and DAT_IMAGELAYOUT.

Obviously a change in orientation will have an effect on the output image dimensions, so these
must be reflected in DAT_IMAGEINFO during State 6. The resulting image dimensions shall
be reported by the data source after considering the affect of the rotation on the current frame.

ICAP_ORIENTATION and ICAP_ROTATION are additive. The original frame is modified by
ICAP_ORIENTATION as it is downloaded to the device by the Source, and represents the
orientation of the paper being scanned. ICAP_ROTATION is then applied to the captured
image to yield the final framing information that is reported to the Application in State 6 or 7.
One possible reason for combining these two values is to use them to cancel each other out. For
instance, some scanners with automatic document feeders may receive a performance benefit
from describing an ICAP_ORIENTATION of TWOR_LANDSCAPE in combination with an
ICAP_ROTATION of 90 degrees. This would allow the user to feed images in a landscape
orientation (which lets them feed faster), while rotating the captured images back to portrait
(which is the way the user wants to view them).

Chapter 4

4-90 TWAIN 1.9a Specification

Transfer of Multiple Images
Chapter 3 discussed the transfer of a single image. Transferring multiple images simply
requires looping through the single-image transfer process repeatedly whenever more images
are available. Two classes of issues arise when considering multiple image transfer under
TWAIN:

• What state transitions are allowable when a session is at an inter-image boundary?

• What facilities are available to support the operation of a document feeder? This
includes issues related to high-performance scanning.

This section starts with a review of the single-image transfer process. This is followed by a
discussion of options available to an application once the transfer of a single image is complete.
Finally, document feeder issues are presented.

To briefly review the single-image transfer process:

• The application enables the Source and the session moves from State 4 to State 5.

• The Source sends the application a MSG_XFERREADY when an image is ready for
transfer.

• The application uses DG_IMAGE / DAT_IMAGEINFO / MSG_GET and DG_IMAGE /
DAT_IMAGELAYOUT / MSG_GET to get information about the image about to be
transferred.

• The application initiates the transfer using a DG_CONTROL / DAT_IMAGExxxxFER /
MSG_GET operation. The transfer occurs.

• Following a successful transfer, the Source returns TWRC_XFERDONE.

• The application sends the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
operation to acknowledge the end of the transfer and learn the number of pending
transfers.

If the intent behind transferring a single image is to simply flush it from the Source (for
example, an application may want to scan only every other page from a stack placed in a
scanner with a document feeder), the following operation suffices:

• Issue a CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation. As with
normal image transfer, this operation tells the Source that the application has completed
acquisition of the current image, and the Source responds by reporting the number of
pending transfers.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-91

Preparing for Multiple Image Transfer

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation issued by the
application at the end of every image transfer performs two important functions:

• It returns a count of pending transfers (in TW_PENDINGXFERS.Count)

• It transitions the session to State 6 (Transfer Ready) if the count of pending transfers is
nonzero, or to State 5 (Source Enabled) if the count is zero. Recall that the count returned
is a positive value if the Source knows the number of images available for acquisition. If
the Source does not know the number of images available, the count returned us -1. The
latter situation can occur if, for example, a document feeder is in use. Note that not
knowing the number of images available includes the possibility that no further images
are available; see the description of DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER for more on this.

We have just seen that after the MSG_ENDXFER operation is issued following an image
transfer, the session is either in State 6 or State 5; that is, the session is still very much in an
active state. If the session is in State 6 (i.e. “an image is available”), the application takes one of
two actions so as to eventually transition the session to State 5 (i.e. “Source is ready to acquire
an image, though none is available”):

• It continues to perform the single-image transfer process outlined earlier until no more
images are available, or

• It issues a DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET to flush all pending
transfers from the Source.

Once the session is back in State 5, the application has to decide whether to stay in State 5 or
transition down to State 4 (“Source is open, and ready for capability negotiation”.) Two
scenarios are possible here.

In one scenario, the application lets the Source control further state transitions. If the Source
sends it a MSG_XFERREADY, the application restarts the multiple image transfer loop
described above. If the Source sends it a MSG_CLOSEDSREQ (e.g. because the user activated
the “Done” trigger on the UI displayed by the Source), the application sends back a
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS, thereby putting the session in
State 4.

In the other scenario, the application directly controls session state transitions. For example, the
application may want to shut down the current session as soon as the current batch of images
have been transferred. In this case, the application issues a DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS as soon as the pending transfers count reaches
zero.

It should be noted that there is no “right”, “wrong” or “preferred” scenario for an application
to follow when deciding what to do once all images in the current set have been transferred. If
an application wants to let the user control the termination of a session explicitly, it may well
wait for the Source to send it a MSG_CLOSEDSREQ. On the other hand, the application may
have a strong sense of what constitutes a session; for example, it may want to terminate a scan
session as soon as a blank page is transferred. In such a case, the application will want to
control the condition under which the MSG_DISABLEDS is sent.

Chapter 4

4-92 TWAIN 1.9a Specification

Use of a Document Feeder

The term document feeder can refer to a physical device’s automatic document feeder, such as
might be available with a scanner, or to the logical feeding ability of an image database. Both
input mechanisms apply although the following text uses the physical feeder for its discussion.
The topics covered in this section are:

• Controlling whether to scan pages from the document feeder or the platen

• Detecting whether or not paper is ready for scanning

• Controlling scan lookahead

Note that these concepts are applicable to scanners that do not have feeders; see the discussion
below for details.

Selecting the Document Feeder

Sometimes the use of a document feeder actually alters how the image is acquired. For
instance, a scanner may move its light bar over a piece of paper if the paper is placed on a
platen. When a document feeder is used, however, the same scanner might hold the light bar
stable and scan the moving paper. To prepare for such variations the application and Source
can explicitly agree to use the document feeder. The negotiation for this action must occur
during State 4 before the Source is enabled using the following capability.

CAP_FEEDERENABLED
Determine if a Source has a document feeder available and, if so, select that option.

• To determine if this capability is supported, use a DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation. TWRC_FAILURE /
TWCC_CAPUNSUPPORTED indicates this Source does not have the ability to select
the document feeder.

• If supported, use the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation
during State 4.

• Set TW_CAPABILITY.Cap to CAP_FEEDERENABLED.
• Create a container of type TW_ONEVALUE and set it to TRUE. Reference

TW_CAPABILITY.hContainer to the container.
• Execute the MSG_SET operation and check the Return Code.

If TWRC_SUCCESS then the feeder is available and your request to use it was
accepted. The application can now set other document feeder capabilities.

If TWRC_FAILURE and TWCC_CAPUNSUPPORTED,
TWCC_CAPBADOPERATION, or TWCC_BADVALUE then this Source does not
have a document feeder capability or does not allow it to be selected explicitly.

Note: If an application wanted to prevent the user from using a feeder, the application
should use a MSG_SET operation to set the CAP_FEEDERENABLED capability to
FALSE.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-93

Detecting Whether an Image is Ready for Acquisition

Having an image ready for acquisition in the Source device is independent of having a
selectable document feeder. There are three possibilities here:

• The Source cannot tell whether an image is available,
• An image is available for acquisition, or
• No image is available for acquisition

These cases can be detected by first determining whether a Source can tell that image data is
available for acquisition (case 1. vs. cases 2. and 3.) and then determining whether image data is
available (case 2. vs. case 3.)The capabilities used to do so are as follows:

CAP_PAPERDETECTABLE
First, determine if the Source can tell that documents are loaded.

• To check if a Source can detect documents, use the DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation.

• Set the TW_CAPABILITY.Cap field to CAP_PAPERDETECTABLE.
• The Source returns TWRC_SUCCESS with the hContainer structure’s value set to

TRUE if it can detect a loaded document that is ready for acquisition. If the result
code is TWRC_FAILURE with TWCC_CAPUNSUPPORTED or TWCC_BADVALUE,
then the Source cannot detect that paper is loaded.

Note: CAP_PAPERDETECTABLE can be used independently of
CAP_FEEDERENABLED. Also, an automatic document feeder need not be
present for a Source to support this capability; e.g. a scanner that can detect
paper on its platen should return TRUE.

The application cannot set this capability. The Source is simply reporting on a condition.

CAP_FEEDERLOADED
Next, determine if there are documents loaded in the feeder.

• To check if pages are present, use the DG_CONTROL / DAT_CAPABILITY /
MSG_GET operation.

• Set the TW_CAPABILITY.Cap field to CAP_FEEDERLOADED.
• The Source returns TRUE if there are documents loaded. The information is in the

container structure pointed to by the hContainer field of the TW_CAPABILITY
structure.

Note: Neither CAP_FEEDERENABLED nor CAP_PAPERDETECTABLE need be
TRUE to use this capability. A FALSE indication from this capability simply
indicates that the feeder is not loaded or that the Source’s feeder cannot tell.
For a definitive answer, be sure to check CAP_PAPERDETECTABLE.

Chapter 4

4-94 TWAIN 1.9a Specification

Controlling Scan Lookahead

With low-end scanners there is usually ample time for the CPU handling the image acquisition
to process incoming image data on-the-fly or in the scan delay between pages. However, with
higher performance scanners the CPU image processing time for a given page can become a
significant fraction of the scan time. This problem can be alleviated if the scanner can scan
ahead image data that the CPU has yet to acquire. This data can be buffered in scanner-local
memory, or stored in main memory by the Source via a DMA operation while the CPU
processes the current image.

Scan look-ahead is not always desirable, however. This is because the decision to continue a
scan may be determined by the results of previously scanned images. For example, a scanning
application may decide to stop a scan whenever it sees a blank page. If scan look-ahead were
always enabled, one or more pages past the blank page may be scanned and transferred to the
scanner’s output bin. Such behavior may be incorrect from the point of view of the
application’s design

We have argued that the ability to control scan look-ahead is highly desirable. However, a
single “enable scan look-ahead” command is insufficient to capture the richness of function
provided by some scanners. In particular, TWAIN’s model of document feeding has each
image (e.g., sheet of paper) transition through a three stage process.

1. Image is in input bin. This action is taken by the user (for example, by placing a stack
of paper into an auto-feeder.)

2. Image is ready for scan. This action causes the next available image to be placed at the
start of the scan area. Set the CAP_AUTOFEED capability(described below)to
automatically feed images to the start of the scan area.

3. Image is scanned. This action actually causes the image to be scanned. For example,
the DG_IMAGE/DAT_IMAGEMEMXFER/MSG_GET operation initiates image
transfer to an application via buffered memory. TWAIN allows a Source to pre-fetch
images into Source-local memory (even before the application requests them) by setting
the CAP_AUTOSCAN capability.

CAP_AUTOFEED
Enable the Source’s automatic document feeding process.

• Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.
• Set the TW_CAPABILITY.Cap field to CAP_AUTOFEED and set the capability to

TRUE.
• When set to TRUE, the behavior of the Source is to eject one page and feed the next

page after all frames on the first page are acquired. This automatic feeding process
will continue whenever there is image data ready for acquisition (and the Source is in
an enabled state). CAP_FEEDERLOADED is TRUE showing that pages are in the
document feeder.

Note: CAP_FEEDERENABLED must be set to TRUE to use this capability. If not,
the Source should return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-95

CAP_AUTOSCAN
Enable the Source’s automatic document scanning process.

• Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.
• Set the TW_CAPABILITY.Cap field to CAP_AUTOSCAN and set the capability to

TRUE.
• When set to TRUE, the behavior of the Source is to eject one page and scan the next

page after all frames on the first page are acquired. This automatic scanning process
will continue whenever there is image data ready for acquisition (and the Source is in
an enabled state.

Note: Setting CAP_AUTOSCAN to TRUE implicitly sets CAP_AUTOFEED to TRUE
also.

When your application uses automatic document feeding:
• Set CAP_XFERCOUNT to -1 indicating your application can accept multiple images.
• Expect the Source to return the TW_PENDINGXFERS.Count as -1. It indicates the Source

has more images to transfer but it is not sure how many.
• Using automatic document feeding does not change the process of transferring multiple

documents described earlier and in Chapter 3.

Control of the Document Feeding by the Application

In addition to automatic document feeding, TWAIN provides an option for an application to
manually control the feeding of documents. This is only possible if the Source agrees to
negotiate the following capabilities during States 5 and 6 by use of CAP_EXTENDEDCAPS. If
CAP_AUTOFEED is set to TRUE, it can impact the way the Source responds to the following
capabilities as indicated below.

CAP_FEEDPAGE
• If the application sets this capability to TRUE, the Source will eject the current page

(if any) and feed the next page.
• To work as described requires that CAP_FEEDERENABLED and

CAP_FEEDERLOADED be TRUE.
• If CAP_AUTOFEED is TRUE, the action is the still the same.
• The page ejected corresponds to the image that the application is acquiring (or is

about to acquire). Therefore, if CAP_AUTOSCAN is TRUE and one or more pages
have been scanned speculatively, the page ejected may correspond to a page that has
already been scanned into Source-local buffers.

CAP_CLEARPAGE
• If the application sets this capability to TRUE, the Source will eject the current page

and leave the feeder acquire area empty (that is, with no image ready to acquire).
• To work as described, this requires that CAP_FEEDERENABLED be TRUE and there

be a paper in the feeder acquire area to begin with.
• If CAP_AUTOFEED is TRUE, the next page will advance to the acquire area.
• If CAP_AUTOSCAN is TRUE, setting this capability returns TWRC_FAILURE with

TWCC_BADVALUE.

Chapter 4

4-96 TWAIN 1.9a Specification

CAP_REWINDPAGE
• If the application sets this capability to TRUE, the Source will return the current page

to the input area and return the last page from the output area into the acquisition
area.

• To work as described requires that CAP_FEEDERENABLED be TRUE.
• If CAP_AUTOFEED is TRUE, the normal automatic feeding will continue after all

frames of this page are acquired.
• The page rewound corresponds to the image that the application is acquiring.

Therefore, if CAP_AUTOSCAN is TRUE and one or more pages have been scanned
speculatively, the page rewound may correspond to a page that has already been
scanned into Source-local buffers.

Transfer of Compressed Data
When using the Buffered Memory mode for transferring images, some Sources may support
the transfer of data in a compressed format.

To determine if a Source supports transfer of compressed data and to set the capability

1. Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

2. Set the TW_CAPABILITY.Cap field to ICAP_COMPRESSION.

3. The Source returns information about the compression schemes they support in the
container structure pointed to by the hContainer field of TW_CAPABILITY. The
identifiers for the compression alternatives all begin with TWCP_, such as
TWCP_PACKBITS, and can be seen in the Constants section of Chapter 8 and in the
TWAIN.H file.

4. If you wish to negotiate for the transfer to use one of the compression schemes shown,
use the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation.

The TW_IMAGEMEMXFER structure is used with the DG_IMAGE / DAT_IMAGEMEMXFER
/ MSG_GET operation. The structure looks like this:

typedef struct {
TW_UINT16 Compression; /* A TWCP_xxxx constant */
TW_UINT32 BytesPerRow;
TW_UINT32 Columns;
TW_UINT32 Rows;
TW_UINT32 XOffset;
TW_UINT32 YOffset;
TW_UINT32 BytesWritten;
TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR *pTW_IMAGEMEMXFER;

 Advanced Application Implementation

TWAIN 1.9a Specification 4-97

When compressed strips of data are transferred:

• The BytesPerRow field will be set to 0. The Columns, Rows, XOffset, and YOffset fields
will contain TWON_DONTCARE32 indicating the fields hold invalid values. (The
original image height and width are available by using the DG_IMAGE /
DAT_IMAGEINFO / MSG_GET operation during State 6 prior to the transfer.)

• Transfer buffers are always completely filled by the Source. For compressed data, it is
very likely that at least one partial line will be written into the buffer.

• The application is responsible for deallocating the buffers.

When compressed, tiled data are transferred:

• All fields in the structure contain valid data. BytesPerRow, Columns, Rows, XOffset, and
YOffset all describe the uncompressed tile. Compression and BytesWritten describe the
compressed tile.

• In this case, unlike with compressed, strip data transfer, the Source allocates the transfer
buffers. This allows the Source to create buffers of differing sizes so that complete,
compressed tiles can be transferred to the application intact (not split between sequential
buffers). Under these conditions, the application should set the fields of the
TW_MEMORY structure so Flags is TWMF_DSOWNS, Length is TWON_DONTCARE32
and TheMem is NULL. The Source must assume that the application will keep the
previous buffer rather than releasing it. Therefore, the Source must allocate a new buffer
for each transfer.

• The application is responsible for deallocating the buffers.

• Finally, the application cannot assume that the tiles will be transferred in any particular,
logical order.

JPEG Compression

TWAIN supports transfer of several forms of compressed data. JPEG compression is one of
them. The JPEG compression algorithm provides compression ratios in the range of 10:1 to 25:1
for grayscale and full-color images, often without causing visible loss of image quality. This
compression, which is created by the application of a series of “perceptual” filters, is achieved
in three stages:

Color Space Transformation and Component Subsampling
(Color Images Only, Not for Grayscale)

The human eye is far more sensitive to light intensity (luminance) than it is to light frequency
(chrominance, or “color”) since it has, on average, 100 million detectors for brightness (the
“rods”) but only about 6 million detectors for color (the “cones”). Substantial image
compression can be achieved simply by converting a color image into a more efficient
luminance/chrominance color space and then subsampling the chrominance components.

Chapter 4

4-98 TWAIN 1.9a Specification

This conversion is provided for by the TW_JPEGCOMPRESSION structure. By specifying the
TW_JPEGCOMPRESSION.ColorSpace = TWPT_YUV, Source RGB data is converted into more
space-efficient YUV data (better known as CCIR 601-1 or YCbCr).
TW_JPEGCOMPRESSION.SubSampling specifies the ratio of luminance to chrominance
samples in the resulting YUV data stream, and a typical choice calls for two luminance samples
for every chrominance sample. This type of subsampling is specified by entering 0x21102110
into the TW_JPEGCOMPRESSION.SubSampling field. A larger ratio of four luminance
samples for every chrominance sample is represented by 0x41104110. To sample two
luminance values for every chrominance sample in both the horizontal and vertical axes, use a
value of 0x21102110.

Application of the Discrete Cosine Transform (DCT) and Quantization

The original components (with or without color space conversion) are next mathematically
converted into a spatial frequency representation using the DCT and then filtered with
quantization matrices (each frequency component is divided by its corresponding member in a
quantization matrix). The quantization matrices are specified by
TW_JPEGCOMPRESSION.QuantTable[] and up to four quantization matrices may be defined
for up to four different original components. TW_JPEGCOMPRESSION.QuantMap[] maps the
particular original component to its respective quantization matrix.

Note: Defaults are provided for the quantization map and tables are suggested in Section K
of the JPEG Draft International Standard, version 10918-1 are used as the default
tables for QuantTable, HuffmanDC, and HuffmanAC by TWAIN. The default tables
are selected by putting NULL into each of the TW_JPEGCOMPRESSION.QuantTable[]
entries.

Huffman encoding

The resulting coefficients from the DCT and quantization steps are further compressed in one
final stage using a loss-less compression algorithm called Huffman encoding. Application
developers can provide Huffman tables, though typically the default tables—selected by
writing NULL into TW_JPEGCOMPRESSION.HuffmanDC[] and
TW_JPEGCOMPRESSION.HuffmanAC[]—yield very good results.

The algorithm optionally supports the use of restart marker codes. The purpose of these
markers is to allow random access to strips of compressed data in JPEG data stream. They are
more fully described in the JPEG specification.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-99

See Chapter 8 for the definition of the TW_JPEGCOMPRESSION data structure. Example data
structures are shown below for RGB image compression and grayscale image compression:

/* RGB image compression - YUV conversion and 2:1:1 chrominance */
/* subsampling */

typedef struct TW_JPEGCOMPRESSION myJPEG;

myJPEG.ColorSpace = TWPT_YUV; // convert RGB to YUV
myJPEG.SubSampling = 0x21102110; // 2 Y for each U, V
myJPEG.NumComponents = 3; // Y, U, V
myJPEG.RestartFrequency = 0; // No restart markers
myJPEG.QuantMap[0] = 0; // Y component uses table0
myJPEG.QuantMap[1] = 1; // U component uses table 1
myJPEG.QuantMap[2] = 1; // V component uses table 1
myJPEG.QuantTable[0] = NULL; // select defaults for quant

// tables
myJPEG.QuantTable[1] = NULL; //
myJPEG.QuantTable[2] = NULL; //
myJPEG.HuffmanMap[0] = 0; // Y component uses DC & AC

// table 0
myJPEG.HuffmanMap[1] = 1; // U component uses DC & AC

// table 1
myJPEG.HuffmanMap[2] = 1; // V component uses DC & AC

// table 1
myJPEG.HuffmanDC[0] = NULL; // select default for Huffman

// tables
myJPEG.HuffmanDC[1] = NULL; //
myJPEG.HuffmanAC[0] = NULL; //
myJPEG.HuffmanAC[1] = NULL; //

/* Grayscale image compression - no color space conversion or */
/* subsampling */

typedef struct TW_JPEGCOMPRESSION myJPEG;

myJPEG.ColorSpace = TWPT_GRAY; // Grayscale data
myJPEG.SubSampling = 0x10001000; // no chrominance components
myJPEG.NumComponents = 1; // Grayscale
myJPEG.RestartFrequency = 0; // No restart markers
myJPEG.QuantMap[0] = 0; // select default for quant

// map
myJPEG.QuantTable[0] = NULL; //
myJPEG.HuffmanMap[0] = 0; // select default for Huffman

// tables
myJPEG.HuffmanDC[0] = NULL; //
myJPEG.HuffmanAC[0] = NULL; //

The resulting compressed images from these examples will be compatible with the JPEG File
Interchange Format (JFIF version 1.1) and will therefore be usable by a variety of applications
that are JFIF-aware.

Chapter 4

4-100 TWAIN 1.9a Specification

Alternative User Interfaces
Alternatives to Using the Source Manager’s Select Source Dialog

TWAIN ships its Source Manager code to act as the communication vehicle between
application and Source. One of the services the Source Manager provides is locating all
available Sources that meet the application’s requirements and presenting those to the user for
selection.

It is recommended that the application use this approach. However, the application is not
required to use this service. Two alternatives exist:

• The application can develop and present its own custom selection interface to the user.
This is presented in response to the user choosing Select Source... from its menu.

• Or, if the application is dedicated to control of a specific Source, the application can
transparently select the Source. In this case, the application does not functionally need to
have a Select Source... option in the menu but a grayed-out one should be displayed for
consistency with all other TWAIN-compliant applications.

Displaying a custom selection interface:

1. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST operation to have the
Source Manager locate the first Source available. The name of the Source is contained
in the TW_IDENTITY.ProductName field. Save the TW_IDENTITY structure.

2. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT to have the Source
Manager locate the next Source. Repeatedly use this operation until it returns
TWRC_ENDOFLIST indicating no more Sources are available. Save the
TW_IDENTITY structure.

3. Use the ProductName information to display the choices to the user. Once they have
made their selection, use the saved TW_IDENTITY structure and the DG_CONTROL /
DAT_IDENTITY / MSG_OPENDS operation to have the Source Manager open the
desired Source. (Note, using this approach, as opposed to the MSG_USERSELECT
operation, the Source Manager does not update the system default Source information
to reflect your choice.)

Transparently selecting a Source:
If the application wants to open the system default Source , use the DG_CONTROL /
DAT_IDENTITY / MSG_GETDEFAULT operation to have the Source Manager locate the
default Source and fill the TW_IDENTITY structure with information about it. The name of
the Source is contained in the TW_IDENTITY.ProductName field. Save the TW_IDENTITY
structure.
OR
If you know the ProductName of the Source you wish to use and it is not the system default
Source, use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST and DG_CONTROL
/ DAT_IDENTITY / MSG_GETNEXT operations to have the Source Manager locate each
Source. You must continue looking at Sources until you verify that the desired Source is
available. Save the TW_IDENTITY structure when you locate the Source you want. If the
Return Code TWRC_ENDOFLIST appears before the desired Source is located, it is not
available.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-101

Use the saved TW_IDENTITY structure and the DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS operation to have the Source Manager open the desired Source. (Note,
using this approach, rather than MSG_USERSELECT, the Source Manager does not update
the system default Source information to reflect your choice.)

Alternatives to Using the Source’s User Interface

Just as with the Source Manager’s Select Source dialog, the application may ask to not use the
Source’s user interface. Certain types of applications may not want to have the Source’s user
interface displayed. An example of this can be seen in some text recognition packages that
wish to negotiate a few capabilities (i.e. pixel type, resolution, page size) and then proceed
directly to acquiring and transferring the data.

To Enable the Source without Displaying its User Interface

• Use the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation.

• Set the ShowUI field of the TW_USERINTERFACE structure to FALSE.

• When the command is received and accepted (TWRC_SUCCESS), the Source does not
display a user interface but is armed to begin capturing data. For example, in a flatbed
scanner, the light bar will light and begin to move. A handheld scanner will be armed
and ready to acquire data when the “go” button is pressed on the scanner. Other devices
may respond differently but they all will either begin acquisition immediately or be
armed to begin acquiring data as soon as the user interacts with the device.

Capability Negotiation is Essential when the Source’s User Interface is not Displayed

• Since the Source’s user interface is not displayed, the Source will not be giving the user
the opportunity to select the information to be acquired, etc. Unless default values are
acceptable, current values for all image acquisition and control parameters must be
negotiated before the Source is enabled, i.e. while the session is in State 4.

When TW_USERINTERFACE.ShowUI is set to FALSE:

• The application is still required to pass all events to the Source (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation) while the Source is enabled.

• The Source must display the minimum possible user interface containing only those
controls required to make the device useful in context. In general, this means that no
user interface is displayed, however certain devices may still require a trigger to initiate
the scan.

• The Source still displays a progress indicator during the acquisition. The application can
suppress this by setting CAP_INDICATORS to FALSE, if the Source allows this.

• The Source still displays errors and other messages related to the operation of its device.
This cannot be turned off.

• The Source still sends the application a MSG_XFERREADY notice when the data is ready
to be transferred.

• The Source may or may not send a MSG_CLOSEDSREQ to the application asking to be
closed since this is often user-initiated. Therefore, after the Source has returned to State 5
(following the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation
and the TW_PENDINGXFERS.Count = 0), the application can send the DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation.

Chapter 4

4-102 TWAIN 1.9a Specification

Note: Some Sources may display the UI even when ShowUI is set to FALSE. An application
can determine whether ShowUI can be set by interrogating the
CAP_UICONTROLLABLE capability. If CAP_UICONTROLLABLE returns FALSE
but the ShowUI input value is set to FALSE in an activation of DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS, the enable DS operation returns
TWRC_CHECKSTATUS but displays the UI regardless. Therefore, an application that
requires that the UI be disabled should interrogate CAP_UICONTROLLABLE before
issuing MSG_ENABLEDS.

Modal Versus Modeless User Interfaces

The Source Manager’s user interface is a modal interface but the Source may provide a
modeless or modal interface. Here are the differences:

Modeless
When a Source uses a modeless user interface, although the Source’s interface is displayed,
the user is still able to access the application by clicking on the application’s window and
making it active.
The user is expected to click on a Close button on the Source’s user interface when they are
ready for that display to go away. The application must NOT automatically close a
modeless Source after the first (or any subsequent) transfer, even if the application is only
interested in receiving a single transfer. If the application closes the Source before the user
requests it, the user is likely to become confused about why the window disappeared. Wait
until the user indicates the desire to close the Source’s window and the Source sends this
request (MSG_CLOSEDSREQ) to the application before closing the Source.

Modal
A Source using a modal user interface prevents the user from accessing other windows.
For Windows only, if the interface is application modal, the user cannot access other
applications but can still access system utilities. If the interface is system modal (which is
rare), the user cannot access anything else at an application or system level. A system
modal dialog might be used to display a serious error message, like a UAE.
If using a modal interface, the Source can perform only one acquire during a session
although there may be multiple frames per acquisition. The Source will send a close
request to the application following the completion of the data transfer. Again, the
application waits to receive this request.

The Source indicates if it is using a modeless or modal interface after the application enables it
using the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation. The data
structure used in the operation (TW_USERINTERFACE) contains a field, ShowUI, which is set
by the application to indicate whether the Source should display its user interface. If the
application requests the user interface be shown, it may also set the ModalUI field to indicate if
it wishes the Source’s GUI to run modal (TRUE) or modeless (FALSE).

When requested by the Source, the application uses the DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation to remove the Source’s user interface.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-103

Grayscale and Color Information for an Image
There are operation triplets in TWAIN that allow the application developer to interact with and
influence the grayscale or color aspect of the images that a Source transfers to the application.
The following operations provide these abilities:

CIE Color Descriptors
DG_IMAGE / DAT_CIECOLOR / MSG_GET

Grayscale Changes
DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET
DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Palette Color Data
DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

RGB Response Curve Data
DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET
DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

CIE Color Descriptors

The CIE XYZ approach is a method for storing color data which simplifies doing mathematical
manipulations on the data. (The topic of CIE XYZ color space is discussed thoroughly in
Appendix A.)

If your application wishes to receive the image data in this format:

1. You must ensure that the Source is able to provide data in CIE XYZ format. To check
this, use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation and get
information on the ICAP_PIXELTYPE. If TWPT_CIEXYZ is returned as one of the
supported types, the Source can provide data in CIE XYZ format.

2. After verifying that the Source supports it, the application can specify that data
transfers should use the CIE XYZ format by invoking a DG_CONTROL /
DAT_CAPABILITY / MSG_SET operation on the ICAP_PIXELTYPE. Use a
TW_ONEVALUE container whose value is TWPT_CIEXYZ.

To determine the parameters that were used by the Source in converting the color data into the
CIE XYZ format, use the DG_IMAGE / DAT_CIECOLOR / MSG_GET operation following the
transfer of the image.

Chapter 4

4-104 TWAIN 1.9a Specification

Grayscale Changes

(The grayscale operations assume that the application has instructed the Source to provide
grayscale data by setting its ICAP_PIXELTYPE to TWPT_GRAY and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its grayscale data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_GRAYRESPONSE / MSG_SET operation. The desired transfer curve information is
placed by the application within the TW_GRAYRESPONSE structure (the actual array is of
type TW_ELEMENT8). The application must be certain to check the Return Code following
this request. If the Return Code is TWRC_FAILURE and the Condition Code shows
TWCC_BADPROTOCOL, this indicates the Source does not support grayscale response curves
(despite supporting grayscale data).

If the Source allows the application to set the grayscale transfer curve, there must be a way to
reset the curve to its original non-altered value. Therefore, the Source must have an “identity
response curve” which does not alter grayscale data but transfers it exactly as acquired. When
the application sends the DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET operation, the
Source resets the grayscale response curve to its identity response curve.

Palette Color Data

(The palette8 operations assume that the application has instructed the Source to use the
TWPT_PALETTE type for its ICAP_PIXELTYPE and that the Source has accepted this.)

The DAT_PALETTE8 operations allow the application to inquire about a Source’s support for
palette color data and to set up a palette color transfer. The operations are specialized for 8-bit
data, whether grayscale or color (8-bit or 24-bit). The MSG_GET operation allows the
application to learn what palette was used by the Source during the image acquisition. The
application should always execute this operation immediately after an image transfer rather
than before because the Source may optimize the palette during the acquisition process. Some
Sources may allow an application to define the palette to be used during image acquisition via
the MSG_SET operation. Be sure to check the Return Code to verify that it is TWRC_SUCCESS
following a MSG_SET operation. That is the only way to be certain that your requested palette
will actually be used during subsequent palette transfers.

 Advanced Application Implementation

TWAIN 1.9a Specification 4-105

RGB Response Curve Data

(The RGB Response curve operations assume that the application has instructed the Source to
provide RGB data by setting its ICAP_PIXELTYPE to TWPT_RGB and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its RGB data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_RGBRESPONSE / MSG_SET operation. The desired transfer curve information is placed
by the application within the TW_RGBRESPONSE structure (the actual array is of type
TW_ELEMENT8). The application must be certain to check the Return Code following this
request. If the Return Code is TWRC_FAILURE and the Condition Code shows
TWCC_BADPROTOCOL, this indicates the Source does not support RGB response curves
(despite supporting RGB data).

If the Source allows the application to set the RGB response curve, there must be a way to reset
the curve to its original non-altered value. Therefore, the Source must have an “identity
response curve” which does not alter RGB data but transfers it exactly as acquired. When the
application sends the DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET operation, the
Source resets the RGB response curve to its identity response curve.

Contrast, Brightness, and Shadow Values
There is considerable confusion about what is the appropriate way to present these actual
features for a particular device. Anyone who has attempted to support these capabilities
knows that the recommended ranges do not accurately reflect the capabilities of real world
devices. Data source developers have tried many different methods of getting the correct
response for their data source, and not all are consistent.

By providing a meaningful step size, or by providing a different container, a data source can
provide the application with enough information to accurately model the actual ability of the
device. For an application that wishes to present a custom User Interface for this type of
capability, it is not really useful to the user if it provides 2000 steps from -1000 to +1000,
especially if the device really only supports a small number of levels.

Since both data source developers and application developers read the same specification, it
can be assumed that it is not acceptable to provide values that do not fit within the documented
ranges for these types of capabilities.

The following suggestion is an example of how to follow the specification, and provide the
most accurate values for the particular data source.

Chapter 4

4-106 TWAIN 1.9a Specification

Example 1: ICAP_BRIGHTNESS Supporting Only Three Levels

The specification requirement stated in Chapter 9 is as follows:

“Source should normalize the values into the range. Make sure that a ‘0' value is available as the
Current Value when the Source starts up. If the Source’s ± range is asymmetric about the ‘0’ value,
set range maxima to ±1000 and scale homogeneously from the ‘0’ value in each direction. This will
yield a positive range whose step size differs from the negative range’s step size.”

Note: It should be expanded in this statement that for a step size that differs in the negative
and positive range, a TW_ENUMERATION container must be used. A TW_RANGE
container is not suitable for representing a non-linear step size).

Assume the actual device simply supports the options normal, lighten, and darken. These can
fit into the constraints by mapping actual values to required values:

Normal = 0
Lighten = -1000
Darken = 1000

These values can be placed in a TW_RANGE container with a step size of 1000, or into a
TW_ENUMERATION containing only the 3 values. { -1000, 0, 1000 }, the current and default
values are 0.

TWAIN 1.9a Specification 5-107

5
Source Implementation

Companies that produce image-acquisition devices, and wish to gain the benefits of being
TWAIN-compliant, must develop TWAIN-compliant Source software to drive their device.
The Source software is the interface between TWAIN’s Source Manager and the company’s
physical (or logical) device. To write effective Source software, the developer must be familiar
with the application’s expectations as discussed in the other chapters of this document. This
chapter discusses:

Chapter Contents
The Structure of a Source 108
Operation Triplets 110
Sources and the Event Loop 111
User Interface Guidelines 114
Capability Negotiation 116
Data Transfers 117
Error Handling 120
Memory Management 122
Requirements to be a TWAIN-Compliant Source 124
Other Topics 126

Chapter 5

5-108 TWAIN 1.9a Specification

The Structure of a Source
The following sections describe the structure of a source.

On Windows

Implementation

The Source is implemented as a Dynamic Link Library (DLL). Sources should link to
TWAIN.LIB at link time. The Source will not run stand-alone. The DLL typically runs within
the (first) calling application’s heap although DLLs may be able to allocate their own heap and
stack space. There is only one copy of the DLL’s code and data loaded at run-time, even if
more than one application accesses the Source. For more information regarding DLLs on
Win32s, Windows95, and Windows NT please refer to Microsoft documents.

Naming and Location

The DLL’s file name must end with a .DS extension. The Source Manager recursively searches
for your Source in the TWAIN sub-directory of the Windows directory (typically
C:\WINDOWS on Windows 95/98, or C:\WINNT on Windows NT). To reduce the chance for
naming collisions, each Source should create a sub-directory beneath TWAIN, giving it a name
relevant to their product. The Source DLLs are placed there. Supporting files may be placed
there as well, but since this is a system directory which may only be modifiable by the System
Administrator, Sources must not write any information into this directory after the installation.

Entry Points and Segment Attributes

Every Source is required to have a single entry point called DS_Entry (see Chapter 6). For 16-
bit sources only, in order to speed up the Source Manager’s ability to identify Sources, the
Source entry point DS_Entry() and the code to respond to the DG_CONTROL /
DAT_IDENTITY / MSG_GET operation must reside in a segment marked as PRELOAD. All
other segments should be marked as LOADONCALL (with the exception of any interrupt
handler that may exist in the Source which needs to be in a FIXED code segment).

Resources

• Version Information - The Microsoft VER.DLL is included with the TWAIN toolkit for
use by your installation program, if you have one, to validate the version of the currently
installed Source Manager. Sources should be marked with the Version information
capability defined in Microsoft Windows 3.1. To do this, you can use the resource
compiler from the version 3.1 SDK. VER.DLL and the version stamping are also
compatible with Microsoft Windows version 3.0.

• Icon Id - Future versions of the TWAIN Source Manager may display the list of available
Sources using a combination of the ProductName (in the Source’s TW_IDENTITY
structure) and an Icon (as the Macintosh version currently does). Therefore, it is
recommended that you add this icon into your Source resource file today. This will
allow your Source to be immediately compatible with any upcoming changes. The icon
should be identified using TWON_ICONID from the TWAIN.H file.

 Source Implementation

TWAIN 1.9a Specification 5-109

General Notes

• GlobalNotify - Microsoft Windows allows only one GlobalNotify handler per task. As
the Source resides in the application heap, the Source should not use the
GMEM_NOTIFY flag on the memory blocks allocated as this may disrupt the correct
behavior of the application that uses GlobalNotify.

• Windows Exit Procedure (WEP) - During the WEP, the Source is being unloaded by
Microsoft Windows. The Source should make sure all the resources it allocated and
owns get released whether or not the Source was terminated properly.

On Macintosh

Implementation

A Source on a Macintosh is implemented as a Shared Library. The Source will not run stand-
alone. A separate copy of the Source’s code will be made for each application that opens the
Source. Macintosh development books such as Inside Macintosh describe the special
requirements for developing Shared Libraries.

The resource fork of a Data Source is always opened Read Only by the Source Manager. Data
Sources cannot store run-time data in their resource forks. Preference files should be used for
this purpose.

Naming and Location

The type for a Source is DSrc. Note that this is different than previous versions of the Source
Manager. The Source Manager will recursively search for files of this type in the TWAIN Data
Sources folder, which is located in the Extensions folder of the current System Folder.

It is recommended that each Source file, along with any other files it may require, be installed
into a uniquely named folder within the TWAIN Data Sources folder. Placing your files within
a specially named folder will limit the chances of name collisions of the Source’s support files
(or the Source itself) with the names of other Sources and Source-support files already installed.
The Source Manager will recursively search out all Sources within the TWAIN Data Sources
folder.

Compatibility with Older Data Sources

The version 1.8 Source Manager maintains full compatibility with older resource based data
sources. It is recommended that all Data Source vendors update their data sources, as the level
of compatibility will be reduced in the future as new versions of the Macintosh OS are released.

Chapter 5

5-110 TWAIN 1.9a Specification

Operation Triplets
In Chapter 3, we introduced all of the triplets that an application can send to the Source
Manager or ultimately to a Source. There are several other triplet operations which do not
originate from the application. Instead, they originate from the Source Manager or Source and
are introduced in this chapter. All defined operation triplets are listed in detail in Chapter 7.

Triplets from the Source Manager to the Source

There are three operation triplets that are originated by the Source Manager. They are:

DG_CONTROL / DAT_IDENTITY
MSG_GET Returns the Source’s identity structure
MSG_OPENDS Opens and initializes the Source
MSG_CLOSEDS Closes and unloads the Source

The DG_CONTROL / DAT_IDENTITY / MSG_GET operation is used by the Source Manager
to identify available Sources. It may send this operation to the Source at any time and the
Source must be prepared to respond informatively to it. That means, the Source must be able
to return its identity structure before being opened by the Source Manager (with the
MSG_OPENDS command). The Source’s initially loaded code segment must be able to
perform this function without loading any additional code segments. This allows quick
identification of all available Sources and is the only operation a Source must support before it
is formally opened.

The TW_IDENTITY structure looks like this:
typedef struct {

TW_UINT32 Id;
TW_VERSION Version;
TW_UINT16 ProtocolMajor;
TW_UINT16 ProtocolMinor;
TW_UINT32 SupportedGroups;
TW_STR32 Manufacturer;
TW_STR32 ProductFamily;
TW_STR32 ProductName;

} TW_IDENTITY, FAR *pTW_IDENTITY;

The ProductName field in the Source’s TW_IDENTITY structure should uniquely identify the
Source. This string will be placed in the Source Manager’s Select Source... dialog for the user.
(The file name of the Source should also approximate the ProductName, if possible, to add
clarity for the user at installation time.) Fill in all fields except the Id field which will be
assigned by the Source Manager. The unique Id number that identifies your Source during its
current session will be passed to your Source when it is opened by the MSG_OPENDS
operation. Sources on Windows must save this TW_IDENTITY.Id information for use when
sending notifications from the Source to the application.

 Source Implementation

TWAIN 1.9a Specification 5-111

Sources and the Event Loop
Handling Events

On both Windows and Macintosh, when a Source is enabled (i.e. States 5, 6, and 7), the
application must pass all events (messages) to the Source. Since the Source runs subservient to
the application, this ensures that the Source will receive all events for its window. The event
will be passed in the TW_EVENT data structure that is referenced by a DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT command.

Note: Starting with TWAIN 1.8, it is now possible for events to be managed in State 4 only to
support CAP_DEVICEEVENTS. This is a fundamental change from previous TWAIN
behavior that has been added to allow the Source to notify the Application of
important changes in the state of the Source even while in State 4. Note also that the
default value for CAP_DEVICEEVENTS (if supported) must be an empty
TW_ARRAY, indicating the event reporting is turned off. This is essential to allow
backward compatibility with pre-1.8 Applications.

Routing all messages to all connected Sources while they are enabled places a burden on the
application and creates a potential performance bottleneck. Therefore, the Source must process
the incoming events as quickly as possible. The Source should examine each incoming
operation before doing anything else. Only one operation’s message field says
MSG_PROCESSEVENT so always look at the message field first. If it indicates
MSG_PROCESSEVENT then:

Immediately determine if the event belongs to the Source.

If it does
Set the Return Code for the operation to TWRC_DSEVENT
Set the TWMessage field to MSG_NULL
Process the event

Else
Set the Return Code to TWRC_NOTDSEVENT
Set the TWMessage field to MSG_NULL
Return to the application immediately

If the Source developer fails to process events with this high priority, the user may see
degraded performance whenever the Source is frontmost which reflects poorly on the Source.

Chapter 5

5-112 TWAIN 1.9a Specification

On Windows, the code fragment looks like the following:
TW_UINT16 CALLBACK DS_Entry(pTW_IDENTITY pSrc,

TW_UINT32 DG,
TW_UINT16 DAT,
TW_UINT16 MSG,
TW_MEMREF pData)

{
TWMSG twMsg;
TW_UINT16 twRc;
//Valid states 5 – 7 (or 4 – 7 if CAP_DEVICEEVENTS has been
// negotiated to anything other than its default value of an empty
// TW_ARRAY). As soon as the application has enabled the
// Source it must being sending the Source events. This allows the
// Source to receive events to update its user interface and to
// return messages to the application. The app sends down ALL
// message, the Source decides which ones apply to it.

if (MSG == MSG_PROCESSEVENT)
{

if (hImageDlg && IsDialogMessage(hImageDlg,
(LPMSG)(((pTW_EVENT)pData)->pEvent)))

{
twRc = TWRC_DSEVENT;

// The source should, for proper form, return a MSG_NULL for
// all Windows messages processed by the Data Source

((pTW_EVENT)pData)->TWMessage = MSG_NULL;
}
else
{

// notify the application that the source did not
// consume this message
twRc = TWRC_NOTDSEVENT;

((pTW_EVENT)pData)->TWMessage = MSG_NULL;
}

}
else
{

// This is a Twain message, process accordingly.
// The remainder of the Source’s code follows...

}
return twRc;
}

The Windows IsDialogMessage() call is used in this example. Sources can also use other
Windows calls such as TranslateAccelerator() and TranslateMDISYSAccel().

 Source Implementation

TWAIN 1.9a Specification 5-113

Communicating to the Application

As explained in Chapter 3, there are four instances where the Source must originate and
transmit a notice to the application:

• When it has data ready to transfer (MSG_XFERREADY)
 The Source must send this message when the user clicks the “GO” button on the Source’s

user interface or when the application sends a DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS operation with ShowUI = FALSE. The
Source will transition from State 5 to State 6. The application should now perform their
inquiries regarding TW_IMAGEINFO and capabilities. Then, the application issues a
DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET operation to begin the transfer
process. Typically, though it is not required, it is at this time that a flatbed scanner (for
example) will begin simultaneously to acquire and transfer the data using the specified
transfer mode.

• When it needs to have its user interface disabled (MSG_CLOSEDSREQ)
 Typically, the Source will send this only when the user clicks on the “CLOSE” button on

the Source’s user interface or when an error occurs which is serious enough to require
terminating the session with the application. The Source should be in (or transition to)
State 5. The application should respond by sending a DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation to transition the session back to
State 4.

• When the user has pressed the OK button in a Source’s dialog that was brought up
with DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY
(MSG_CLOSEDSOK).

 Applications should use this event as the indicator that the user has set all the desired
attributes from the Source’s GUI.

• When the Source needs to report a Device Event. Note that the application must
explicitly request the Source to supply Device Events (MSG_DEVICEEVENT). Sources
must only provide those Device Events requested by a Source through the
CAP_DEVICEEVENT capability. The default for this capability when the Source starts
up is an empty TW_ARRAY, indicating that no Device Events are being reported.
Applications that turn on Device Events must issue a DG_CONTROL /
DAT_DEVICEEVENT / MSG_GET command as soon as possible after receiving a
Device Event.

These notices are sent differently on Windows versus Macintosh systems.

On Windows
The Source creates a call to DSM_Entry (the entry point in the Source Manager) and
fills the destination with the TW_IDENTITY structure of the application. The Source
uses one of the following triplets:

DG_CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ

The Source Manager, on Windows, recognizes the notice and makes sure the message
is received correctly by the application.

Chapter 5

5-114 TWAIN 1.9a Specification

On Macintosh
The Source on Macintosh does not use the operations described above. Instead, it uses
a TW_EVENT structure to send its notice to the application. The TW_EVENT structure
is created by the application and sent to the Source as data in a DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation.
Normally, the Source places MSG_NULL in the TW_EVENT.TWMessage field. To
relay the notice, the Source places one of the following in the TWMessage field:

MSG_XFERREADY
MSG_CLOSEDSREQ
MSG_CLOSEDSOK
MSG_DEVICEEVENT

The application examines that field when the DG_CONTROL / DAT_EVENT /
MSG_PROCESSEVENT operation concludes and recognizes these two special notices
from the Source.

User Interface Guidelines
Each TWAIN-compliant Source provides a user interface to assist the user in acquiring data
from their device. Although each device has its own unique needs, the following guidelines are
provided to increase consistency among TWAIN-compliant devices.

Displaying the User Interface

The application issues DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS to
transition the session from State 4 to 5.

The TW_USERINTERFACE data structure contains these fields:

• ShowUI - If set to TRUE, the Source displays its user interface.
If FALSE, the application will be providing its own.

• hParent - Used by Sources on Windows only. It indicates the application’s window
handle. This is to be designated as the Source’s parent for the dialog so it is a proper
child of its parent application.

• ModalUI - To be set by the Application to TRUE or FALSE.

Sources are not required to allow themselves to be enabled without showing their user interface
(ShowUI = FALSE) but it is strongly recommended that they allow this. If your Source cannot
be used without its user interface, it should enable showing the user interface (just as if
ShowUI = TRUE) and return TWRC_CHECKSTATUS. All Sources, however, must report
whether or not they honor ShowUI set to FALSE via the CAP_UICONTROLLABLE capability.
This allows applications to know whether the Source-supplied user interface can be suppressed
before it is displayed.

When the user interface is disabled (by DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS), a pointer to a TW_USERINTERFACE is included in the pData parameter.

 Source Implementation

TWAIN 1.9a Specification 5-115

Modal versus Modeless Interfaces

As stated in Chapter 4, the Source’s user interface may be modal or modeless. The modeless
approach gives the user more control and is recommended whenever practical. Refer to the
information following this table for specifics about Windows and Macintosh implementation.

Error and Device Control Indicators

The Source knows what is happening with the device it controls. Therefore, the Source is
responsible for determining when and what information regarding errors and device controls
(ex. “place paper in document feeder”) should be presented to the user. Error information
should be placed by the Source on top of either the application’s or Source’s user interface. Do
not present error messages regarding capability negotiation to the user since this should be
transparent.

Progress Indicators

The Source should display appropriate progress indicators for the user regarding the
acquisition and/or transfer processes. The Source must provide this information regardless of
whether or not its user interface is displayed (ShowUI equals TRUE or FALSE). To suppress
the indicators when the user interface is not displayed, the application should negotiate the
CAP_INDICATORS capability to be FALSE.

Impact of Capability Negotiation

If the Source has agreed to limit the Available Values and/or to set the Current Value, the
interface should reflect the negotiation. However, if a capability has not been negotiated by the
application, the interface should not be modified (don’t gray out a control because it wasn’t
negotiated.)

Advanced Topics

If a Source can acquire from more than one device, the Source should allow the user to choose
which device they wish to acquire from. Provide the user with a selection dialog that is similar
to the one presented by the Source Manager’s Select Source... dialog.

Implementing Modal and Modeless User Interfaces

On Windows

You cannot use the modal dialog creation call DialogBox() to create the Source’s user interface
main window. To allow event processing by both the application and the Source, this call
cannot be used. Modal user interfaces in Source are not inherently bad, however. If a modal
user interface makes sense for your Source, use either the CreateDialog() or CreateWindow()
call.

Modal (App Modal)
It is recommended that the Source’s main user interface window be created with a
modeless mechanism. Source writers can still decide to make their user interface
behave modally if they choose. It is even appropriate for a very simple “click and go”
interface to be implemented this way.
This is done by first specifying the application’s window handle (hWndParent) as the
parent window when creating the Source’s dialog/window and second by

Chapter 5

5-116 TWAIN 1.9a Specification

enabling/disabling the parent window during the MSG_ENABLEDS /
MSG_DISABLEDS operations. Use EnableWindow(hWndParent, FALSE) to disable
the application window and EnableWindow(hWndParent, TRUE) to re-enable it.

Modeless
If implementing a modeless user interface, specify NULL as the parent window handle
when creating the Source’s dialog/window. Also, it is suggested that you call
BringWindowToTop() whenever a second request is made by the same application or
another application requesting access to a Source that supports multiple application
connections.

On Macintosh

It is recommended that the Source’s main user interface window be created with a modeless
mechanism. Source writers can still decide to make their user interface behave modally if they
choose. It is even appropriate for a very simple “click and go” interface to be implemented this
way.

Capability Negotiation
Capability negotiation is a critical area for a Source because it allows the application to
understand and influence the images that it receives from your Source.

Inquiries From the Application

While the Source is open but not yet enabled (from DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS until DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS), the
application can inquire the values of all supported capabilities, and request to set those values.

Once the Source is enabled, the application may only inquire about capabilities. An attempt to
set a capability should fail with TWRC_FAILURE and TWCC_SEQERROR (unless
CAP_EXTENDEDCAPS was negotiated).

Responding to Inquiries

Sources must be able to respond to capability inquiries with current values at any time the
Source is open (i.e. from MSG_OPENDS until MSG_CLOSEDS or before posting a
MSG_CLOSEDSREQ).

A Source should respond with information to any capability that applies to your device. Only
if a capability has no match with your device’s features should you respond with
TWRC_FAILURE / TWCC_BADCAP.

Refer to Chapter 9 for the complete list of TWAIN-defined capabilities.

Responding to Requests to Set Capabilities

If the requested value is invalid or the Source does not support the capability, then return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED. If the requested operation (MSG_SET,
MSG_RESET, etc.) is not supported, then return TWRC_FAILURE /
TWCC_CAPBADOPERATION. If the capability is unavailable because of a dependency on

 Source Implementation

TWAIN 1.9a Specification 5-117

another capability (i.e., ICAP_CCITTKFACTOR is not available unless ICAP_COMPRESSION
is TWCP_GROUP32D), then return TWCC_CAPSEQERROR. Returning these condition codes
makes it possible for an application using its own UI to intelligently make dependent
capabilities available or unavailable for user access.

If the request was fulfilled, return TWRC_SUCCESS.

If the requested value is close to an acceptable value but doesn’t match exactly, set it as closely
as possible and then return TWRC_CHECKSTATUS.

Memory Allocation

The TW_CAPABILITY structure used in capability negotiation is both allocated and
deallocated by the application. The Container structure pointed to by the hContainer field in
TW_CAPABILITY is allocated by the Source for “get” operations (MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, MSG_RESET) and by the application for the
MSG_SET operation. Regardless of which one allocates the container, the application is
responsible for deallocating it when it is done with it.

Limitations Imposed by the Negotiation

If a Source agrees to allow an application to restrict a capability, it is critical that the Source
abide by that agreement. If at all possible, the Source’s user interface should reflect the
agreement and not offer invalid options. The Source should never transfer data that violates
the agreement reached during capability negotiation. In that situation, the Source can decide to
fail the transfer or somehow adjust the values.

Data Transfers
Transfer Modes

All Sources must support Native and Buffered Memory data transfers. It is strongly suggested
that they support Disk File mode, too. The default mode is Native. To select one of the other
modes, the application must negotiate the ICAP_XFERMECH capability (whose default is
TWSX_NATIVE). Sources must support negotiation of this capability. The native format for
Microsoft Windows is DIB. For Macintosh, the native format is a PICT. The version of PICT to
be transferred is the latest version available on the machine on which the application is running
(usually PICT II for machines running 32-bit/color QuickDraw and PICT I for machines
running black and white QuickDraw).

Initiating a Transfer

Transfers are initiated by the application (using the DG_IMAGE / DAT_IMAGExxxxFER /
MSG_GET operations). A successful transfer transitions the session to State 7. If the transfer
fails, the Source returns TWRC_FAILURE with the appropriate Condition Code and remains in
State 6.

Concluding a Successful Transfer

To signal that the transfer is complete (i.e. the file is completed or the last buffer filled), the
Source should return TWRC_XFERDONE. In response, the application must send a

Chapter 5

5-118 TWAIN 1.9a Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation. Only then may the
Source transition from State 7 back to State 6 or to State 5 if no more images are ready to be
transferred.
If more images are pending transfer, the Source must wait in State 6 until the application either
requests the transfer or aborts the transfers. The Source may not “time-out” on any TWAIN
transaction.

Aborting a Transfer

Either the application or Source can originate the termination of a transfer (although the
application cannot do this in the middle of a Native or Disk File mode transfer). The Source
generally terminates the transfer if the user cancels the transfer or a device error occurs which
the Source determines is fatal to the transfer or the connection with the application. If the user
canceled the transfer, the Source should return TWRC_CANCEL to signal the premature
termination. The session remains in State 7 until the application sends the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. If the Source aborts the transfer, it
returns TWRC_FAILURE and the session typically remains in State 6. (If the failure occurs
during the second buffer, or a later buffer, of a Buffered Memory transfer, the session remains
in State 7.)

Native Mode Transfers

On Native mode transfers, the data parameter in the DSM_Entry call is a pointer to a variable
of type TW_UINT32.

On Windows
The low word of this 32-bit integer is a handle variable to a DIB (Device Independent
Bitmap) located in memory.

On Macintosh
This 32-bit integer is a handle to a Picture (a PicHandle). It is a Quick Draw picture
located in memory.

Native transfers require the data to be transferred to a single large block of RAM. Therefore,
they always face the risk of having an inadequate amount of RAM available to perform the
transfer successfully.

If inadequate memory prevents the transfer, the Source has these options:

• Fail the transfer operation- Return TWRC_FAILURE / TWCC_LOWMEMORY
• Allow the user to clip the data to fit into available memory - Return TWRC_XFERDONE
• Allow the user to cancel the operation - Return TWRC_CANCEL

If the operation fails, the session remains in State 6. If the operation is canceled, the session
remains in State 7 awaiting the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER or
MSG_RESET from the application. The application can return the session to State 4 and
attempt to renegotiate the transfer mechanism (ICAP_XFERMECH) to Disk File or Buffered
Memory mode.

The Source cannot be interrupted by the application when it is acquiring an image through
Native Mode Transfer. The Source’s user interface may allow the user to abort the transfer, but
the application will not be able to do so even if the application presents its own acquisition user
interface.

 Source Implementation

TWAIN 1.9a Specification 5-119

Disk File Mode Transfers

The Source selects a default file format and file name (typically, TWAIN.TMP in the current
directory). It reports this information to the application in response to the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_GET operation.

The application may determine all of the Source’s supported file formats by using the
ICAP_IMAGEFILEFORMAT capability. Based on this information, the application can request
a particular file format and define its own choice of file name for the transfer. The desired file
format and file name will be communicated to the Source in a DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_GET operation.

When the Source receives the DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET operation, it
should transfer the data into the designated file. The following conditions may exist:

Condition How to Handle

No file name and/or file format was
specified by the application during setup

Use either the Source’s default file name or
the last file information given to the Source
by the application. Create the file.

The application specified a file but failed
to create it

Create the application’s defined file.

The application’s specified file exists but
has data in it

Overwrite the existing data.

The Source cannot be interrupted by the application when it is acquiring a file. The Source’s
user interface may allow the user to abort the transfer, but the application will not be able to do
so even if the application presents its own acquisition user interface.

Buffered Memory Mode Transfers

When the Source transfers strips of data, the application allocates and deallocates buffers used
for a Buffered Memory mode transfer. However, the Source must recommend appropriate
sizes for those buffers and should check that the application has followed its recommendations.

When the Source transfers tiles of data, the Source allocates the buffers. The application is
responsible for deallocating the memory.

To determine the Source’s recommendations for buffer sizes, the application performs a
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The Source fills in the
MinBufSize, MaxBufSize, and Preferred fields to communicate its buffer recommendations.
Buffers must be double-word aligned and padded with zeros per raster line.

When an application issues a DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation,
check the TW_IMAGEMEMXFER.Memory.Length field to determine the size of the buffer
being presented to you. If it does not fit the recommendations, fail the operation with
TWRC_FAILURE / TWCC_BADVALUE.

If the buffer is an appropriate size, fill in the required information.

• Sources must write one or more complete lines of image data (the full width of a strip or
tile) into the buffer. Partial lines of image data are not allowed. If some of the buffer is
unused, fill it in with zeros. Additionally, each line must be aligned to a 32-bit boundary.

Chapter 5

5-120 TWAIN 1.9a Specification

Return TWRC_SUCCESS after each successful buffer except for the last one (return
TWRC_XFERDONE after that one).

• If the Source is transferring data whose bit depth is not 8 bits, it should fill the buffer
without padding the data. If a 5-bit device wants the application to interpret its data as
8-bit data, it should report that it is supplying 8-bit data, make the valid data bits the
most significant bits in the data byte, and pad the least significant bits with bits of
whichever sense is “lightest”. Otherwise, the Source should pack the data bits together.
For a 5-bit R-G-B device, that means the data for the green channel should immediately
follow the last bit of the red channel. The application is responsible for “unpacking” the
data. The Source reports how many bits it is providing per pixel in the BitsPerPixel field
of the TW_IMAGEINFO data structure.

Error Handling
Operation Triplet and State Verification

• Sources support all defined TWAIN triplets. A Source must verify every operation
triplet they receive. If the operation is not recognized, the Source should return
TWRC_FAILURE and TWCC_BADPROTOCOL.

• Sources must also maintain an awareness of what state their session is in. If an
application invokes an operation that is invalid in the current state, the Source should fail
the operation and return TWRC_FAILURE and TWCC_SEQERROR. Valid states for
each operation are listed in Chapter 7.

• Anytime a Source fails an operation that would normally cause the session to transition
to another state, the session should not transition but should remain in the original state.

• Each triplet operation has its own set of valid Return and Condition Codes as listed in
Chapter 7. The Source must return a valid Return Code and set a valid Condition Code,
if applicable, following every operation.

• All Return Codes and Condition Codes in the Source should be cleared upon the next
call to DS_Entry(). Clearing is delayed when a DG_CONTROL / DAT_STATUS /
MSG_GET operation is received. In this case, the Source will fill the TW_STATUS
structure with the current condition information and then clear that information.

• If an application attempts to connect to a Source that only supports single connection (or
a multiply-connected Source that can’t establish any new connections), the Source should
respond with TWRC_FAILURE and TWCC_MAXCONNECTIONS.

 Source Implementation

TWAIN 1.9a Specification 5-121

• For Windows Sources only, the DLL implementation makes it possible to be connected to
more than one application. Unless the operation request is to open the Source, the
Source must verify the application originating an operation is currently connected to the
Source. To do this:
! The Source must maintain a list containing the Id value for each connected

application. (The Id value comes from the application’s TW_IDENTITY structure
which is referenced by the pOrigin parameter in the DS_Entry() call.)

! The Source should check the TW_IDENTITY.Id information of the application
sending the operation and verify that it appears in the Source’s list of connected
applications.

• For Windows only, if connected to multiple applications, the Source is responsible for
maintaining a separate, current Condition Code for each application it is connected to.
The Source writer should also maintain a temporary, and separate, Condition Code for
any application that is attempting to establish a connection with the Source. This is true
both for Sources that support only a single connection or have reached the maximum
connections.

Unrecoverable Error Situations

The Source is solely responsible for determining whether an error condition within the Source
is recoverable or not. The Source must determine when, and what, error condition information
to present to the user. The application relies on the Source to specify when a failure occurs. If a
Source is in an unrecoverable error situation, it may send a MSG_CLOSEDSREQ to the
application to request to have its user interface disabled and have an opportunity to begin
again.

DAT_EVENT Handling Errors

One of the most common problems between a data source and application is the management
of DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT. The symptoms are not
immediately obvious, so it is worth mentioning them to assist new developers in quickly
identifying and solving the problem.

Cannot use TAB or Keyboard Shortcuts to Navigate TWAIN Dialog
The cause of this can be one of two things. Either the application is not forwarding all
messages to TWAIN through the DAT_EVENT mechanism, or the data source is not
properly processing the DAT_EVENT messages. (Windows: calling IsDialogMessage
for each forwarded message with TWAIN Dialog handle)

TWAIN Dialog Box Combo Boxes cannot be opened, Edit boxes produce multiple chars
per keystroke

This case is caused by processing TWAIN Dialog Messages twice. Either the data
source has not returned the proper return code in response to DAT_EVENT calls
(Windows: TWRC_DSEVENT when IsDialogMessage returns TRUE), or the
application is ignoring the return code.

Chapter 5

5-122 TWAIN 1.9a Specification

This is not a problem when data source operates through TWAIN Thunker
Problems with the application handling of these messages are not often detected if the
data source is operating through the TWAIN Thunking mechanism. This is because the
Thunker process has a separate Window and Message pump that properly dispatch
DAT_EVENT messages to the data source. Any mistake in application handling will
pass without notice since all DAT_EVENT calls will return TWRC_NOTDSEVENT.
(with the exception of important messages such as MSG_XFERREADY.)

Problem seems erratic, keyboard shortcuts and Tab key work for Message Boxes, but not
TWAIN Dialog

This observation often further confuses the issue. In Windows, a standard Message box
is Modal, and operates from a local message pump until the user closes it. All
messages are properly dispatched to the message box since it does not rely on the
application message pump. The TWAIN Dialog is slightly different since it is
implemented Modeless. There is no easy way to duplicate Modal behavior for the
TWAIN Dialog.

Memory Management
Windows Specifics

On 16-bit Windows systems, a single copy of the Source Manager and Source(s) services all
applications wishing to access TWAIN functionality. If the Source can connect to more than
one application, it will probably need to maintain a separate execution frame for each
connected application. The Source does not have unlimited memory available to it so be
conservative in its use.

On 32-bit Windows systems, a new in-memory copy of the Source Manager and Source(s) is
created in the Application’s calling space. In addition, a call may be made to the Windows On
Windows (WOW) system, to support the thunking mechanism. For more information on the
thunker, refer to Chapter 3 – Installation of the Source Manager.

It is valid for an application to open a Source and leave it open between several acquires.
Therefore, Sources should minimize the time and resources required to load and remain open
(in State 4). Also, Sources should allow a reasonable number of connections to ensure they can
handle more than one application using the Source in this manner (leaving it open between
acquires).

Macintosh Specifics

Each application that loads the Source Manager has a private copy of the Source. Each Source
that is connected also runs as a private copy. It is important for the Source writer to recognize
that their Source will be using the memory heap of the host application, not in its own heap.
Therefore, the Source should be conscientious with allocation and deallocation of memory.

 Source Implementation

TWAIN 1.9a Specification 5-123

General Guidelines

The following are some general guidelines:

• Check, when the Source is launched, to assure that enough memory space is available for
adequate execution.

• Always verify that allocations were successful.
• Work with relocatable objects whenever possible - the heap you fragment is not your

own.
• Deallocate temporary memory objects as soon as they are no longer needed.
• Maintain as small a non-operating memory footprint as can prudently be done - the

Source will be “compatible” with more applications on more machines.
• Clean up after yourself. When about to be closed, deallocate all locally allocated RAM,

eliminate any other objects on the heap, and prepare as appropriate to terminate.

Local Variables

The Source may allocate and maintain local variables and buffers. Remember that you are
borrowing RAM from the application so be efficient about how much RAM is allocated
simultaneously.

Instances Where the Source Allocates Memory

In general, the application allocates all necessary structures and passes them to the Source.
There are a few exceptions to this rule:

• The Source must create the container, pointed to by the hContainer field, needed to hold
capability information on DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, or MSG_RESET operations. The
application deallocates the container.

• The Source allocates the buffer for Native mode data transfers. The application
deallocates the buffer.

• Normally, the application creates the buffers used in a Buffered Memory transfer
(DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET). However, if the Source is
transferring tiled data, rather than strips of data, it is responsible for allocating the
buffers. The application deallocates the buffers.

See the DG_IMAGE / DAT_JPEGCOMPRESSION operations.

Chapter 5

5-124 TWAIN 1.9a Specification

Requirements to be a TWAIN-Compliant Source
Requirements

TWAIN-compliant Sources must support the following:

Operations
DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

DG_CONTROL / DAT_STATUS / MSG_GET

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

DG_CONTROL / DAT_XFERGROUP / MSG_GET

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

 Source Implementation

TWAIN 1.9a Specification 5-125

Capabilities

Every Source must support all five DG_CONTROL / DAT_CAPABILITY operations on:

CAP_XFERCOUNT

Every Source must support DG_CONTROL / DAT_CAPABILITY MSG_GET on:

CAP_SUPPORTEDCAPS
CAP_UICONTROLLABLE

Sources that supply image information must support DG_CONTROL / DAT_CAPABILITY /
MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:

ICAP_COMPRESSION
ICAP_PLANARCHUNKY
ICAP_PHYSICALHEIGHT
ICAP_PHYSICALWIDTH
ICAP_PIXELFLAVOR

Sources that supply image information must support DG_CONTROL / DAT_CAPABILITY /
MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

ICAP_BITDEPTH
ICAP_BITORDER
ICAP_PIXELTYPE
ICAP_UNITS
ICAP_XFERMECH
ICAP_XRESOLUTION
ICAP_YRESOLUTION

All Sources must implement the advertised features supported by their devices. They must
make these features available to applications via the TWAIN protocol. For example, a Source
that’s connected to a device that has an ADF must support DG_CONTROL /
DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT on:

CAP_FEEDERENABLED
CAP_FEEDERLOADED

and DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_AUTOFEED

If the ADF also supports ejecting and rewinding of pages then the Source should also support
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET and MSG_SET on:

CAP_CLEARPAGE
CAP_REWINDPAGE

Chapter 5

5-126 TWAIN 1.9a Specification

On mid and high volume scanners the following are mandatory, beginning with TWAIN 1.9.
These capabilities and operations are required to allow applications to deal with the complexity
and custom features of these high-end devices. Typical use implies a two-step process: a
configuration step, where an administrator creates and selects the session settings (using
MSG_ENABLEDSUIONLY, saving the data using DAT_CUSTOMDSDATA); and a production
step, where an operator selects one of the predefined settings (using DAT_CUSTOMDSDATA,
running the session with TW_USERINTERFACE.ShowUI == FALSE) to drive a scanning
session:

CAP_CUSTOMDSDATA (must be TRUE)
CAP_ENABLEDSUIONLY (must be TRUE)
CAP_UICONTROLLABLE (must be TRUE)
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Other Topics
Custom Operations

Manufacturers may add custom operations to their Sources. These can also be made known to
application manufacturers. This mechanism allows an application to access functionality not
normally available from a generic TWAIN Source.

One use of this mechanism might be to implement device-specific diagnostics for a hardware
diagnostic program. These custom operations should be used sparingly and never in place of
pre-defined TWAIN operations.

Custom operations are defined by specifying special values for Data Groups (DGs), Data
Argument Types (DATs), Messages (MSGs), and Capabilities (CAPs). The following areas
have been reserved for custom definitions:

Data Groups Top 8 bit flags (bits 24 - 31) in the DG identifiers reserved for custom use.

DATs Designators with values greater than 8000 hex.

Messages Designators with values greater than 8000 hex.

Capabilities Designators with values greater than 8000 hex.

The responsibility for naming and managing the use of custom designators lies wholly upon
the TWAIN element originating the designator and the element consuming it. Prior to
interpreting a custom designator, the consuming element must check the originating element’s
ProductName string from its TW_IDENTITY structure. Since custom operation numbers may
overlap, this is the only way to insure against confusion.

 Source Implementation

TWAIN 1.9a Specification 5-127

Networking

If a Source supports connection to a remote device over a network, the Source is responsible for
hiding the network dependencies of that device’s operation from the application. The Source
Manager does not know anything about networks.

In a networking situation, the Source will probably be built in two segments: One running on
the machine local to the application, the other running remotely across the network. Sources
are required to handle all the network interfacing with remote devices (real or logical) through
local Source “stubs” that understand how to access both the network and the remote Source
while interacting logically with the Source Manager.

The segment running on the local machine will probably be a “stub” Source. That is, the local
stub will translate all operations received from the application and Source Manager into a form
the remote source understands (that is, not necessarily TWAIN-defined operations). The stub
also:

• Converts the information returned from the remote source into TWAIN-compliant
results

• Handles local memory management for data copies and data transferring
• Isolates the network from the Source Manager and application
• Manages the connection with the remote Source
• Provides any needed code to handle local hardware (such as interface hardware)
• Provides the local user interface to control the remote Source

Chapter 5

5-128 TWAIN 1.9a Specification

TWAIN 1.9a Specification 6-129

6
Entry Points and

Triplet Components

Chapter Contents
Entry Points 129
Data Groups 132
Data Argument Types 133
Messages 134
Custom Components of Triplets 136

Entry Points
TWAIN has two entry points:

• DSM_Entry() - located in the Source Manager and typically called by applications, with
the following exceptions where a Windows Source calls the Source Manager to
communicate with an Application:

DG_CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK
DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT

• DS_Entry() - located in the Source and called only by the Source Manager.

Programming Basics

• Upon entry, the parameters must be ordered on the stack in Pascal form. Be sure that
your code expects this ordering rather than the reverse order that C uses.

• The keyword FAR is included in the entry point syntax to accommodate the 16-bit
Windows segmented addressing scheme. It has no value for any other operating system,
and is defined as an empty value for everything, except 16-bit Windows.

Chapter 6

6-130 TWAIN 1.9a Specification

Declaration of DSM_Entry()

Written in C code form, the declaration looks like this:

On Windows
TW_UINT16 FAR PASCAL DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

On Macintosh
FAR PASCAL TW_UINT16 DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

Parameters of DSM_Entry()
pOrigin

This points to a TW_IDENTITY structure, allocated by the application, that describes
the application making the call. One of the fields in this structure, called Id, is an
arbitrary and unique identifier assigned by the Source Manager to tag the application
as a unique TWAIN entity. The Source Manager maintains a copy of the application’s
identity structure, so the application must not modify that structure unless it first
breaks its connection with the Source Manager, then reconnects to cause the Source
Manager to store the new, modified identity.

pDest
This is set either to NULL if the application is aiming the operation at the Source
Manager or to the TW_IDENTITY structure of the Source that the application is
attempting to reach. The application allocated the space for the Source’s identity
structure when it decided which Source was to be connected. The Source’s
TW_IDENTITY.Id is also uniquely set by the Source Manager when the Source is
opened and should not be modified by the Source. The application should not count
on the value of this field being consistent from one session to the next because the
Source Manager reallocates these numbers every time it is opened. The Source
Manager keeps a copy of the Source’s identity structure as should the application and
the Source.

DG
The Data Group of the operation triplet. Currently, only DG_CONTROL, DG_IMAGE,
and DG_AUDIO are defined.

 Entry Points and Triplet Components

TWAIN 1.9a Specification 6-131

DAT
The Data Argument Type of the operation triplet. A complete list appears later in this
chapter.

MSG
The Message of the operation triplet. A complete list appears later in this chapter.

pData
The pData parameter is of type TW_MEMREF and is a pointer to the data (a variable
or, more typically, a structure) that will be used according to the action specified by the
operation triplet.

Declaration of DS_Entry()

DS_Entry is only called by the Source Manager. Written in C code form, the declaration looks
like this:

On Windows
TW_UINT16 FAR PASCAL DS_Entry

(pTW_IDENTITY pOrigin, // source of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

On Macintosh
FAR PASCAL TW_UINT16 DS_Entry

(pTW_IDENTITY pOrigin, // source of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

Chapter 6

6-132 TWAIN 1.9a Specification

Data Groups
TWAIN operations can be broadly classified into three data groups:

Control Oriented (DG_CONTROL)
Controls the TWAIN session. Consumed by both Source Manager and Source. It is
always available, no matter what the current setting of DG_CONTROL /
DAT_XFERGROUP.

Image Data Oriented (DG_IMAGE)
Indicates the kind of data to be transferred. Change between DG_AUDIO and
DG_IMAGE as needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET. The
default at startup is for a Source to be ready to transfer DG_IMAGE data.

Audio Data Oriented (DG_AUDIO)
Indicates the kind of data to be transferred. Change between DG_AUDIO and
DG_IMAGE as needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET.

Currently, only image and audio data are supported but this could be expanded to include text,
etc. This has several future implications. If more than one data type exists, an application and
a Source will need to decide what type(s) of data the Source can, and will be allowed to,
produce before a transfer can occur. Further, if multiple transfers are being generated from a
single acquisition—such as when image and text are intermixed and captured from the same
page—it must be unambiguous which type of data is being returned from each data transfer.

Programming Basics

Note the following:

• Data Group designators are 32-bit, unsigned values. The actual values that are assigned
are powers of two (bit flags) so that the DGs can be easily masked.

• There are 24 DGs designated as “reserved” for pre-defined DGs . Four are currently in
use. The top 8 bits are reserved for custom DGs.

 Entry Points and Triplet Components

TWAIN 1.9a Specification 6-133

Data Argument Types
Data Argument Types, or DATs, are used to allow programmatic identification of the TWAIN
type for the structure of status variable referenced by the entry point parameter pData. pData
will always point to a variable or data structure defined by TWAIN. If the consuming
application or Source switches (cases, etc.) on the DAT specified in the formal parameter list of
the entry point call, it can handle the form of the referenced data correctly.

Table 6-1. Data Argument Types

Data Type Used by Associated structure or type

DAT_NULL ANY DG Null structure. No data required for the operation

DAT_CUSTOMBASE n/a Not a DAT in itself, but the baseline a Source must
use when creating a custom DAT.

DAT_AUDIOFILEXFER DG_AUDIO Operates on null data. Filename / Format already
negotiated.

DAT_AUDIONATIVEXFER DG_AUDIO TW_UINT32

On Windows - low word = WAV handle

On Macintosh - audio handle

DAT_CAPABILITY DG_CONTROL TW_CAPABILITY structure

DAT_EVENT DG_CONTROL TW_EVENT structure

DAT_FILESYSTEM DG_CONTROL TW_FILESYSTEM structure

DAT_IDENTITY DG_CONTROL TW_IDENTITY structure

DAT_PARENT DG_CONTROL TW_INT32

On Windows - low word=Window handle

On Macintosh - Set to NULL

DAT_PASSTHRU DG_CONTROL TW_PASSTHRU structure

DAT_PENDINGXFERS DG_CONTROL TW_PENDINGXFERS structure

DAT_SETUPFILEXFER DG_CONTROL TW_SETUPFILEXFER structure

DAT_SETUPFILEXFER2 DG_CONTROL TW_SETUPFILEXFER2 structure

DAT_SETUPMEMXFER DG_CONTROL TW_SETUPMEMXFER structure

DAT_STATUS DG_CONTROL TW_STATUS structure

DAT_USERINTERFACE DG_CONTROL TW_USERINTERFACE structure

DAT_XFERGROUP DG_CONTROL TW_UINT32

A DG designator describing data to be transferred
(currently only image data is supported)

DAT_CIECOLOR DG_IMAGE TW_CIECOLOR structure

DAT_GRAYRESPONSE DG_IMAGE TW_GRAYRESPONSE structure

Chapter 6

6-134 TWAIN 1.9a Specification

DAT_IMAGEFILEXFER DG_IMAGE Operates on NULL data. Filename/Format
already negotiated

DAT_IMAGEINFO DG_IMAGE TW_IMAGEINFO structure

DAT_IMAGELAYOUT DG_IMAGE TW_IMAGELAYOUT structure

DAT_IMAGEMEMXFER DG_IMAGE TW_IMAGEMEMXFER structure

DAT_IMAGENATIVEXFER DG_IMAGE TW_UINT32;

On Windows - low word=DIB handle

On Macintosh - PicHandle

DAT_JPEGCOMPRESSION DG_IMAGE TW_JPEGCOMPRESSION structure

DAT_PALETTE8 DG_IMAGE TW_PALETTE8 structure

DAT_RGBRESPONSE DG_IMAGE TW_RGBRESPONSE structure

Messages
A Message, or MSG, is used to communicate between TWAIN elements what action is to be
taken upon a particular piece of data, or for a data-less operation, what action to perform. If an
application wants to make anything happen in, or inquire any information from, a Source or the
Source Manager, it must make a call to DSM_Entry() with the proper MSG as one parameter of
the operation triplet. The data to be acted upon is also specified in the parameter list of this
call.

A MSG is always associated with a Data Group (DG) identifier and a Data Argument Type
(DAT) identifier in an operation triplet. This operation unambiguously specifies what action is
to be taken on what data. Refer to Chapter 7 for the list of defined operation triplets.

Table 6-2. Messages

Message ID Valid DAT(s) Description of Specified Action

MSG_AUTOMATICCAPTURE
DIRECTORY

DAT_FILESYSTEM Place to store images acquired during automatic
capture

MSG_CHANGEDIRECTORY DAT_FILESYSTEM Change device, domain, host, or image
directory

MSG_CLOSEDS DAT_IDENTITY Close the specified Source
MSG_CLOSEDSM DAT_PARENT Close the Source Manager
MSG_CLOSEDSREQ DAT_NULL Source requests for application to close Source

 Entry Points and Triplet Components

TWAIN 1.9a Specification 6-135

MSG_COPY DAT_FILESYSTEM Copy images across storage devices
MSG_CREATEDIRECTORY DAT_FILESYSTEM Create an image directory
MSG_CUSTOMBASE n/a Not a message in itself, but the baseline a

Source must use when creating a custom
message

MSG_DELETE DAT_FILESYSTEM Delete an image or an image directory
MSG_DEVICEEVENT DAT_NULL Report an event from the Source to the Source

Manager
MSG_DISABLEDS DAT_USERINTERFACE Disable data transfer in the Source
MSG_ENABLEDS DAT_USERINTERFACE Enable data transfer in the Source
MSG_ENDXFER DAT_PENDINGXFERS Application tells Source that transfer is over
MSG_FORMATMEDIA DAT_FILESYSTEM Format a storage device
MSG_GET various DATs Get all Available Values including Current &

Default
MSG_GETCLOSE DAT_FILESYSTEM Close a file context created by

MSG_GETFIRSTFILE
MSG_GETCURRENT various DATs Get Current value
MSG_GETDEFAULT various DATs Get Source’s preferred default value
MSG_GETFIRST DAT_IDENTITY Get first element from a “list”
MSG_GETFIRSTFILE DAT_FILESYSTEM Get the first file in a directory
MSG_GETINFO DAT_FILESYSTEM Get information about the current file
MSG_GETNEXT DAT_IDENTITY Get next element from a “list”
MSG_GETNEXTFILE DAT_FILESYSTEM Get the next file in a directory
MSG_NULL None No action to be taken
MSG_OPENDS DAT_IDENTITY Open and Initialize the specified Source
MSG_OPENDSM DAT_PARENT Open the Source Manager
MSG_PASSTHRU DAT_PASSTHRU For use by Source Vendors only
MSG_PROCESSEVENT DAT_EVENT Tells Source to check if event/message belongs

to it
MSG_RENAME DAT_FILESYSTEM Rename an image or an image directory
MSG_RESET various DATs Return specified item to power-on (TWAIN

default) condition
MSG_SET various DATs Set one or more values
MSG_USERSELECT DAT_IDENTITY Presents dialog of all Sources to select from
MSG_XFERREADY DAT_NULL The Source has data ready for transfer to the

application

Chapter 6

6-136 TWAIN 1.9a Specification

Custom Components of Triplets
Custom Data Groups

A manufacturer may choose to implement custom data descriptors that require a new Data
Group. This would be needed if someone decides to extend TWAIN to, say, satellite telemetry.

• The top 8 bits of every DG_xxxx identifier are reserved for use as custom DGs. Custom
DG identifiers must use one of the upper 8 bits of the DG_xxxx identifier. Remember,
DGs are bit flags.

• The originator of the custom DG must fill the ProductName field in the application or
Source’s TW_IDENTITY structure with a uniquely descriptive name. The consumer will
look at this field to determine whose custom DG is being used.

• TWAIN provides no formal allocation (or vendor-specific “identifier blocks”) for custom
data group identifiers nor does it do any coordination to avoid collisions.

• The DG_CUSTOMBASE value resides in the TWAIN.H file. All custom IDs must be
numerically greater than this base. A similar custom base “address” is defined for Data
Argument Types, Messages, Capabilities, Return Codes, and Condition Codes. The only
difference in concept is that DGs are the only designators defined as bit flags. All other
custom values can be any integer value larger than the xxxx_CUSTOMBASE defined for
that type of designator.

Custom Data Argument Types

DAT_CUSTOMBASE is defined in the TWAIN.H file to allow a Source vendor to define
“custom” DATs for their particular device(s). The application can recognize the Source by
checking the TW_IDENTITY.ProductName and the TW_IDENTITY.TW_VERSION structure.
If an application is aware that this particular Source offers custom DATs, it can use them. No
changes to TWAIN or the Source Manager are required to support such identifiers (or the data
structures which they imply).

Refer to the TWAIN.H file for the value of DAT_CUSTOMBASE for custom DATs. All custom
values must be numerically greater than this constant.

Custom Messages

As with the DATs, MSG_CUSTOMBASE is included in TWAIN.H so that the Source writer can
create custom messages specific to their Source. If the applications understand these custom
messages, actions beyond those defined in this specification can be performed through the
normal TWAIN mechanism. No modifications to TWAIN or the Source Manager are required.

Remember that the consumer of these custom values will look in your
TW_IDENTITY.ProductName field to clarify what the identifier’s value means—there is no
other protection for overlapping custom definitions. Refer to the TWAIN.H file for the value of
MSG_CUSTOMBASE for custom Messages. All custom values must be numerically greater
than this value.

TWAIN 1.9a Specification 7-137

7
Operation Triplets

Chapter Contents
An Overview of the Triplets 137
Format of the Operation Triplet Descriptions 141
Operation Triplets 142

An Overview of the Triplets
From Application to Source Manager (Control Information)

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_IDENTITY MSG_CLOSEDS
MSG_GETDEFAULT
MSG_GETFIRST
MSG_GETNEXT
MSG_OPENDS
MSG_USERSELECT

7-178
7-181
7-182
7-184
7-186
7-190

DG_CONTROL DAT_PARENT MSG_CLOSEDSM
MSG_OPENDSM

7-197
7-198

DG_CONTROL DAT_STATUS MSG_GET 7-221

Chapter 7

7-138 TWAIN 1.9a Specification

From Application to Source (Control Information)
Data Group Data Argument Type Message Page #
DG_CONTROL DAT_CAPABILITY MSG_GET

MSG_GETCURRENT
MSG_GETDEFAULT
MSG_QUERYSUPPORT
MSG_RESET
MSG_SET

7-145
7-147
7-149
7-151
7-153
7-155

DG_CONTROL DAT_CUSTOMDSDATA MSG_GET
MSG_SET

7-159
7-160

DG_CONTROL DAT_FILESYSTEM MSG_AUTOMATICCAPTURE
 DIRECTORY
MSG_CHANGEDIRECTORY
MSG_COPY
MSG_CREATEDIRECTORY
MSG_DELETE
MSG_FORMATMEDIA
MSG_GETCLOSE
MSG_GETFIRSTFILE
MSG_GETINFO
MSG_GETNEXTFILE
MSG_RENAME

7-166
7-167
7-169
7-170
7-171
7-172
7-173
7-174
7-175
7-176
7-177

DG_CONTROL DAT_EVENT MSG_PROCESSEVENT 7-164
DG_CONTROL DAT_PASSTHRU MSG_PASSTHRU 7-199
DG_CONTROL DAT_PENDINGXFERS MSG_ENDXFER

MSG_GET
MSG_RESET
MSG_STOPFEEDER

7-200
7-202
7-204
7-206

DG_CONTROL DAT_SETUPFILEXFER MSG_GET
MSG_GETDEFAULT
MSG_RESET
MSG_SET

7-207
7-208
7-209
7-210

DG_CONTROL DAT_SETUPFILEXFER2 MSG_GET
MSG_GETDEFAULT
MSG_RESET
MSG_SET

7-212
7-214
7-216
7-218

DG_CONTROL DAT_SETUPMEMXFER MSG_GET 7-220
DG_CONTROL DAT_STATUS MSG_GET 7-221
DG_CONTROL DAT_USERINTERFACE MSG_DISABLEDS

MSG_ENABLEDS
MSG_ENABLEDSUIONLY

7-223
7-224
7-227

DG_CONTROL DAT_XFERGROUP MSG_GET
MSG_SET

7-228
7-229

 Operation Triplets

TWAIN 1.9a Specification 7-139

From Application to Source (Image Information)
Data Group Data Argument Type Message Page #
DG_IMAGE DAT_CIECOLOR MSG_GET 7-230
DG_IMAGE DAT_EXTIMAGEINFO MSG_GET 7-232

DG_IMAGE DAT_GRAYRESPONSE MSG_RESET
MSG_SET

7-234
7-235

DG_IMAGE DAT_IMAGEFILEXFER MSG_GET 7-236
DG_IMAGE DAT_IMAGEINFO MSG_GET 7-238
DG_IMAGE DAT_IMAGELAYOUT MSG_GET

MSG_GETDEFAULT
MSG_RESET
MSG_SET

7-240
7-242
7-243
7-244

DG_IMAGE DAT_IMAGEMEMFILEXFER MSG_GET 7-246
DG_IMAGE DAT_IMAGEMEMXFER MSG_GET 7-249
DG_IMAGE DAT_IMAGENATIVEXFER MSG_GET 7-251
DG_IMAGE DAT_JPEGCOMPRESSION MSG_GET

MSG_GETDEFAULT
MSG_RESET
MSG_SET

7-254
7-255
7-256
7-257

DG_IMAGE DAT_PALETTE8 MSG_GET
MSG_GETDEFAULT
MSG_RESET
MSG_SET

7-258
7-260
7-261
7-262

DG_IMAGE DAT_RGBRESPONSE MSG_RESET
MSG_SET

7-263
7-264

From Application to Source (Audio Information)
Data Group Data Argument Type Message Page #

DG_AUDIO DAT_AUDIOFILEXFER MSG_GET 7-142

DG_AUDIO DAT_AUDIOINFO MSG_GET 7-143

DG_AUDIO DAT_AUDIONATIVEXFER MSG_GET 7-144

Chapter 7

7-140 TWAIN 1.9a Specification

From Source Manager to Source (Control Information)
Data Group Data Argument Type Message Page #
DG_CONTROL DAT_IDENTITY MSG_CLOSEDS

MSG_GET
MSG_OPENDS

7-178
7-180
7-188

From Source to Application (Control Information via the Source Manager)
(Used by Windows Sources only)

Data Group Data Argument Type Message Page #
DG_CONTROL DAT_NULL MSG_CLOSEDSOK

MSG_CLOSEDSREQ
MSG_DEVICEEVENT
MSG_XFERREADY

7-192
7-194
7-195

 Operation Triplets

TWAIN 1.9a Specification 7-141

Format of the Operation Triplet Descriptions
The following pages describe the operation triplets. They are all included and are arranged in
alphabetical order using the Data Group, Data Argument Type, and Message identifier list.

There are three operations that are duplicated because that have a different originator and/or
destination in each case. They are:

• DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
! from Application to Source Manager
! from Source Manager to Source

• DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
! from Application to Source Manager
! from Source Manager to Source

• DG_CONTROL / DAT_STATUS / MSG_GET
! from Application to Source Manager
! from Application to Source

The format of each page is:

Triplet - The Concise DG / DAT / MSG Information

Call
Actual format of the routine call (parameter list) for the operation. Identification of the data
structure used for the pData parameter is included.

Valid States
The states in which the application, Source Manager, or Source may legally invoke the
operation.

Description
General description of the operation.

Origin of the Operation (Application, Source Manager or, Source)
The action(s) the application, Source Manager, or Source should take before invoking the
operation.

Destination of the Operation (Source Manager or Source)
The action that the destination element (Source Manager or Source) of the operation will take.

Return Codes
The Return Codes and Condition Codes that are defined and valid for this operation.

See Also
Lists other related operation triplets, capabilities, constants, etc.

Chapter 7

7-142 TWAIN 1.9a Specification

Operation Triplets

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIOFILEXFER, MSG_GET, NULL);

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_IMAGEFILEXFER).

This operation is used to initiate the transfer of audio from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

No special set up or action required. Application should have already invoked the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL /
DAT_SETUPFILEXFER2 / MSG_SET operation, unless the Source’s default transfer format and
file name (typically, TWAINAUD.TMP) are acceptable to the application. The application need
only invoke this operation once per image transferred.

Source should acquire the audio data, format it, create any appropriate header information, and
write everything into the file specified by the previous DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_SET operation, and close the file.

Audio transfers are optional. If an application transfers only the images and never changes to
DG_AUDIO, then the audio snippets will be automatically discarded or skipped by the Source.

Return Codes
TWRC_CANCEL
TWRC_XFERDONE
TWRC_FAILURE

TWCC_BADPROTOCOL.
TWCC_OPERATIONERROR
TWCC_SEQERROR - not state 6.

See Also

ACAP_XFERMECH

 Operation Triplets

TWAIN 1.9a Specification 7-143

DG_AUDIO / DAT_AUDIOINFO / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIOINFO, MSG_GET,

pSourceAudioInfo);

pSourceAudioInfo = A pointer to a TW_AUDIOINFO structure

Valid States

6 and 7

Description

Used to get the information of the current audio data ready to transfer. (Similar operation to
DAT_IMAGEINFO)

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL
TWCC_SEQERROR

See Also

Chapter 7

7-144 TWAIN 1.9a Specification

DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIONATIVEXFER, MSG_GET, pHandle);

pHandle = A pointer to a variable of type TW_UINT32

On Windows - This 32 bit integer is a handle variable to WAV data located in memory.

On Macintosh - This 32-bit integer is a handle to AIFF data

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_IMAGENATIVEXFER).

Causes the transfer of an audioÆs data from the Source to the application, via the Native
transfer mechanism, to begin. The resulting data is stored in main memory in a single block.
The data is stored in AIFF format on the Macintosh and as a WAV format under Microsoft
Windows. The size of the audio snippet that can be transferred is limited to the size of the
memory block that can be allocated by the Source.

Note: This is the default transfer mechanism. All Sources support this mechanism if
DG_AUDIO is supported. The Source will use this mechanism unless the application
explicitly negotiates a different transfer mechanism with ACAP_XFERMECH.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL.
TWCC_SEQERROR - not state 6.

See Also

ACAP_XFERMECH

 Operation Triplets

TWAIN 1.9a Specification 7-145

DG_CONTROL / DAT_CAPABILITY / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GET, pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Current, Default and Available Values for a specified capability.

These values reflect previous MSG_SET operations on the capability, or Source’s automatic
changes. (See MSG_SET).

Note: This operation does not change the Current or Available Values of the capability.

Application

Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GET:

• As the first step in negotiation of a capability’s Available Values.
• To check the results if a MSG_SET returns TWRC_CHECKSTATUS.
• To check the Available, Current and Default Values with one command.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Chapter 7

7-146 TWAIN 1.9a Specification

Fill the fields in pCapability as follows:
pCapability->ConType = TWON_ARRAY,
TWON_ONEVALUE,
TWON_ENUMERATION, or
TWON_RANGE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type your Source uses for this capability. For container types of
TWON_ARRAY and TWON_ONEVALUE provide the Current Value. For container types
TWON_ENUMERATION and TWON_RANGE provide the Current, Default and Available
Values.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/
/* of using TWCC_BADCAP.

TWCC_CAPSEQERROR /* Capability has dependency on other */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */

TWCC_BADDEST /* No such Source in session with */
/* application */

TWCC_LOWMEMORY /* Not enough memory to complete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT, MSG_GETDEFAULT,
MSG_RESET, and MSG_SET
Capability Constants (in Chapter 8)
Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)
Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-147

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GETCURRENT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Current Value for the specified capability.

The Current Value reflects previous MSG_SET operations on the capability, or Source’s
automatic changes. (See MSG_SET).

Note: This operation does not change the Current Values of the capability.

Application

Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETCURRENT:

• To check the Source’s power-on Current Values (see Chapter 9 for TWAIN-defined
defaults for each capability).

• To check just the Current Value (in place of using MSG_GET).
• In State 6 to determine the settings. They could have been set by the user (if

TW_USERINTERFACE.ShowUI = TRUE) or be the results of automatic processes used
by the Source.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Chapter 7

7-148 TWAIN 1.9a Specification

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:
pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE
pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/
/* of using TWCC_BADCAP.

TWCC_CAPSEQERROR /* Capability has dependency on other */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOWMEMORY /* Not enough memory to complete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state. */

See Also
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETDEFAULT, MSG_RESET, and
MSG_SET
Capability Constants (in Chapter 8)
Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)
Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-149

DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GETDEFAULT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Default Value. This is the Source’s preferred default value.

The Source’s Default Value cannot be changed.

Application

Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETDEFAULT:

• To check the Source’s preferred Values. Using the Source’s preferred default as the
Current Value may increase performance in some Sources.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you are sure you have implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure
and place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Chapter 7

7-150 TWAIN 1.9a Specification

Fill the fields in pCapability as follows:
pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE
pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches for this capability. Fill the fields in the
container with the Default Value of this capability.

The Default Value is the preferred value for the Source. This value is used as the power-on
value for capabilities if TWAIN does not specify a default.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/
/* of using TWCC_BADCAP.

TWCC_CAPSEQERROR /* Capability has dependency on other */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOWMEMORY /* Not enough memory to complete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_RESET, and
MSG_SET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-151

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GETDEFAULT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s support status of this capability.

Application

Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_ONEVALUE
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_QUERYSUPPORT:

• To check the whether the Source supports a particular operation on the capability.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

Fill the fields in pCapability as follows:
pCapability->ConType = TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of type
TW_ONEVALUE.

Chapter 7

7-152 TWAIN 1.9a Specification

Fill the fields in TW_ONVALUE as follows:
ItemType = TWTW_INT32;
Item = Bit pattern representing the set of operation that are supported by the Data

Source on this capability (TWQC_GET, TWQC_SET, TWQC_GETDEFAULT,
TWQC_RESET);

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), do not disregard
the operation, but fill out the TWON_ONEVALUE container with a value of zero(0) for the
Item field, indicating no support for any of the DAT CAPABILITY operations, and return a
status of TWRC_SUCCESS.

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any
time that the Source is open.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE
TWCC_BADDEST /* No such Source in-session with */

/* application */
TWCC_LOWMEMORY /* Not enough memory to complete the */

/* operation */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, MSG_RESET, and
MSG_SET

Capability Constants (in Chapter 8)

Capability Container: TW_ONEVALUE (in Chapter 8).

Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-153

DG_CONTROL / DAT_CAPABILITY / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_RESET, pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States
4 only

Description

Change the Current Value of the specified capability back to its power-on value and return the
new Current Value.

The power-on value is the Current Value the Source started with when it entered State 4 after a
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. These values are listed as TWAIN
defaults (in Chapter 9). If “no default” is specified, the Source uses it preferred default value
(returned from MSG_GETDEFAULT).

Application

Set the pCapability fields as follows:
pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application
must free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_RESET:

• To set the Current Value of the specified capability to the Source’s mandatory or
preferred value, and to remove any constants from the allowed values supported by the
Source.

This operation may fail for a low memory condition. Either recover from a
TWCC_LOWMEMORY failure by freeing memory for the Source to use so it can continue, or
terminating the acquisition and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, reset the Current Value of the capability back to its power-on
value. This value must also match the TWAIN default listed in Chapter 9.

Chapter 7

7-154 TWAIN 1.9a Specification

Also return the new Current Value (just like in a MSG_GETCURRENT). Fill in the fields listed
below and allocate the container structure and place its handle into pCapability->hContainer.
The container should be referenced by a “handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:
pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability (after resetting it as stated above).

This is a memory allocation operation. It is possible for this operation to fail due to a low
memory condition. Be sure to verify that the allocation is successful. If it is not, attempt to
reduce the amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that this operation is only valid in State 4, unless CAP_EXTENDEDCAPS was negotiated.
Any attempt to invoke it in any other state should be disregarded, though the Source should
return TWRC_FAILURE with TWCC_SEQERROR.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADCAP /* Unknown capability--Source does not recognize */
/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/
/* of using TWCC_BADCAP.

TWCC_CAPSEQERROR /* Capability has dependency on other */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_LOWMEMORY /* Not enough memory to complete the */
/* operation */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, and MSG_SET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-155

DG_CONTROL / DAT_CAPABILITY / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_SET, pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 only (During State 4, applications can also negotiate with Sources for permission to set the
value(s) of specific capabilities in States 5 and 6 through CAP_EXTENDEDCAPS.)

Description

Changes the Current Value(s) and Available Values of the specified capability to those
specified by the application.

Current Values are set when the container is a TW_ONEVALUE or TW_ARRAY. Available
and Current Values are set when the container is a TW_ENUMERATION or TW_RANGE.

Note: Sources are not required to allow restriction of their Available Values, however, this is
strongly recommended.

Application

An application will use the setting of a capability’s Current and Available Values differently
depending on how the Source was enabled (DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS).

If TW_USERINTERFACE.ShowUI = TRUE

• In State 4, set the Current Value to be displayed to the user as the current value. This
value will be used for acquiring the image unless changed by the user or an automatic
process (such as ICAP_AUTOBRIGHT).

• In State 4, set the Available Values to restrict the settings displayed to the user and
available for use by the Source.

• In State 6, get the Current Value which was chosen by the user or automatic process.
This is the setting used in the upcoming transfer.

If TW_USERINTERFACE.ShowUI = FALSE

• In State 4, set the Current Value to the setting that will be used to acquire images (unless
automatic settings are set to TRUE, for example: ICAP_AUTOBRIGHT).

• In State 6, get the Current Value which was chosen by any automatic processes. This is
the setting used in the upcoming transfer.

Chapter 7

7-156 TWAIN 1.9a Specification

If possible, use the same container type in a MSG_SET that the Source returned from a
MSG_GET. Allocate the container structure. This is where you will place the value(s) you wish
to have the Source set. Store the handle into pCapability->hContainer. The container must be
referenced by a “handle” of type TW_HANDLE.

Set the following:
pCapability->ConType = TWON_ARRAY,

TWON_ONEVALUE,
TWON_ENUMERATION, or
TWON_RANGE

pCapability->Cap = CAP_xxxx designator of
capability of interest

pCapability->hContainer = TW_HANDLE referencing a
container of ConType

Place the value(s) that you wish the Source to use in the container. If successful, these values
will supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source

Return TWRC_FAILURE / TWCC_BADCAP:

• If the application requests this operation on a capability your Source does not recognize
(and you’re sure you’ve implemented all the capabilities that you’re required to).
Disregard the operation.

Return TWRC_FAILURE / TWCC_BADVALUE:

• If the application requests that a value be set that lies outside the supported range of
values for the capability (smaller than your minimum value or larger than your
maximum value). Set the value to that which most closely approximates the requested
value.

• If the application sends a container that you do not support, or do not support in a
MSG_SET.

• If the application attempts to set the Available Values and the Source does not support
restriction of this capability’s Available Values.

Return TWRC_CHECKSTATUS:

• If the application requests one or more values that lie within the supported range of
values (but that value does not exactly match one of the supported values), set the value
to the nearest supported value. The application should then do a MSG_GET to check
these values.

Return TWRC_FAILURE / TWCC_SEQERROR:

• If the application sends the MSG_SET outside of State 4 and the capability has not been
negotiated in CAP_EXTENDEDCAPS.

 Operation Triplets

TWAIN 1.9a Specification 7-157

If the request is acceptable, use the container structure referenced by pCapability->hContainer
to set the Current and Available Values for the capability. If the container type is
TWON_ONEVALUE or TWON_ARRAY, set the Current Value for the capability to that value.
If the container type is TWON_RANGE or TWON_ENUMERATION, the Source will
optionally limit the Available Values for the capability to match those provided by the
application, masking all other internal values so that the user cannot select them. Though this
behavior is not mandatory, it is strongly encouraged.

Important Note: Sources should accommodate requests to limit Available Values. In the
interest of adoptability for the breadth of Source manufacturers, such
accommodation is not required. It is recommended, however, that the
Sources do so, and that the Source’s user interface be modified (from its
power-on state, and when the user interface is raised) to reflect any
limitation of choices implied by the newly negotiated settings.

 For example, if an application can only accept black and white image data,
it tells the Source of this limitation by doing a MSG_SET on
ICAP_PIXELTYPE with a TW_ENUMERATION or TW_RANGE container
containing only TWPT_BW (black and white).

 If the Source disregards this negotiated value and fails to modify its user
interface, the user may select to acquire a color image. Either the user’s
selection would fail (for reasons unclear to the user) or the transfer would
fail (also for unclear reasons for the user). The Source should strive to
prevent such situations.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS /* capability value(s) could not be */

/* matched exactly */

TWRC_FAILURE
TWCC_BADCAP /* Unknown capability--Source does not recognize */

/* this capability. This code should not be used */
/* by sources after 1.6. Applications still need */
/* to test for it for backward compatibility. */

TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
/* 1.6 and newer must use this instead of */
/* using TWCC_BADCAP. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this instead*/
/* of using TWCC_BADCAP.

TWCC_CAPSEQERROR /* Capability has dependency on other */
/* capability. Sources 1.6 and newer must use */
/* this instead of using TWCC_BADCAP. */

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_BADVALUE /* illegal value(s)--outside */
/* Source's range for capability */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

Chapter 7

7-158 TWAIN 1.9a Specification

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, and MSG_RESET

Capability Constants (in Chapter 8)

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in
Chapter 8)

Listing of all capabilities (in Chapter 9)

 Operation Triplets

TWAIN 1.9a Specification 7-159

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CUSTOMDSDATA,
MSG_GET, pCustomData);

pCustomData = A pointer to a TW_CUSTOMDSDATA structure.

Valid States
4 only

Description

This operation is used by the application to query the data source for its current settings, e.g.
DPI, paper size, color format. The sources settings will be returned in a
TW_CUSTOMDSDATA structure. The actual format of the data in this structure is data source
dependent and not defined by TWAIN.

Application

pDest references the sources identity structure. pCustomData points to a
TW_CUSTOMDSDATA structure.

Source

Fills the pCustomData pointer with source specific settings. If supported,
CAP_ENABLEDSUIONLY and CAP_CUSTOMDSDATA are required.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR

See Also

Capability CAP_CUSTOMDSDATA

Chapter 7

7-160 TWAIN 1.9a Specification

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CUSTOMDSDATA,
MSG_SET, pCustomData);

pCustomData = A pointer to a TW_CUSTOMDSDATA structure.

Valid States
4 only

Description

This operation is used by the application to set the current settings for a data source to a
previous state as defined by the data contained in the pCustomData data structure. The actual
format of the data in this structure is data source dependent and not defined by TWAIN.

Application

pDest references the sources identity structure. pCustomData points to a
TW_CUSTOMDSDATA structure.

Source

Changes its current settings to the values specified in the pCustomData structure.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR

See Also

Capability CAP_CUSTOMDSDATA

 Operation Triplets

TWAIN 1.9a Specification 7-161

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_DEVICEEVENT, MSG_GET,

pSourceDeviceEvent);

pSourceDeviceEvent = A pointer to a TW_DEVICEEVENT structure

Valid States

4 through 7

Description

Upon receiving a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from the Source, the
Application must immediately make this call to obtain the event information.

Sources must queue the data for each event so that it is available for this call.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_SEQERROR - no events in the queue, or not in States 4 through 7.

See Also

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT
CAP_DEVICEEVENT

Chapter 7

7-164 TWAIN 1.9a Specification

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_EVENT, MSG_PROCESSEVENT, pEvent);

pEvent = A pointer to a TW_EVENT structure.

Valid States

5 through 7

Description

This operation supports the distribution of events from the application to Sources so that the
Source can maintain its user interface and return messages to the application. Once the
application has enabled the Source, it must immediately begin sending to the Source all events
that enter the application’s main event loop. This allows the Source to update its user interface
in real-time and to return messages to the application which cause state transitions. Even if the
application overrides the Source’s user interface, it must forward all events once the Source has
been enabled. The Source will tell the application whether or not each event belongs to the
Source.

Note: Events only need to be forwarded to the Source while it is enabled.

The Source should be structured such that identification of the event’s “owner” is handled
before doing anything else. Further, the Source should return immediately if the Source isn’t
the owner. This convention should minimize performance concerns for the application
(remember, these events are only sent while a Source is enabled—that is, just before and just
after the transfer is taking place).

Application

Make pEvent->pEvent point to the EventRecord (on Macintosh) or message structure (on
Windows).

Note: On return, the application should check the Return Code from DSM_Entry() for
TWRC_DSEVENT or TWRC_NOTDSEVENT. If TWRC_DSEVENT is returned, the
application should not process the event—it was consumed by the Source. If
TWRC_NOTDSEVENT is returned, the application should process the event as it
normally would.

 Operation Triplets

TWAIN 1.9a Specification 7-165

With either of these Return Codes, the application should also check the pEvent->TWMessage
and switch on the result. This is the mechanism used by the Source to notify the application
that a data transfer is ready or that it should close the Source. The Source can return one of the
following messages:

MSG_XFERREADY /* Source has one or more images */
/* ready to transfer */

MSG_CLOSEDSREQ /* Source wants to be closed, */
/* usually initiated by a */
/* user-generated event */

MSG_NULL /* no message for application */

Source

Process this operation immediately and return to the application immediately if the event
doesn’t belong to you. Be aware that the application will be sending thousands of messages to
you. Consider in-line processing and global flags to speed implementation.

Return Codes
TWRC_DSEVENT /* Source consumed event--application*/

/* should not process it */
TWRC_NOTDSEVENT /* Event belongs to application - */

/* process as usual */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_XFERREADY

Event loop information (in Chapter 3)

Chapter 7

7-166 TWAIN 1.9a Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_AUTOMATICCAPTUREDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation selects the destination directory within the Source (camera, storage, etc), where
images captured using CAP_AUTOMATICCAPTURE will be stored. This command only
selects the destination directory (a file of type TWFT_DIRECTORY). The directory must exist
and be accessible to the Source. The creation of images within the directory is at the discretion
of the Source, and may result in the creation of additional sub-directories.

In all other regards the behavior of this operation is the same as DG_CONTROL /
DAT_FILESYSTEM / MSG_CHANGEDIRECTORY.

If the application does not specify a directory for automatic capture, then the destination of the
images is left to the discretion of the Source. A directory named /Images is recommended, but
not required.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - operation denied (device not ready).
TWCC_FILENOTFOUND - specified InputName does not exist.
TWCC_SEQERROR - not state 4.

See Also
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
CAP_AUTOMATICCAPTURE

 Operation Triplets

TWAIN 1.9a Specification 7-167

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_CHANGEDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation selects the current device within the Source (camera, storage, etc). If the device is
a TWFT_DOMAIN, then this command enters a directory that can contain TWFT_HOST files. If
the device is a TWFT_HOST, then this command enters a directory that can contain
TWFT_DIRECTORY files. If the device is a TWFT_DIRECTORY, then this command enters a
directory that can contain TWFT_DIRECTORY or TWFT_IMAGE files.

Sources can support part or all of the storage hierarchy that is one of the following:

/Domain/Host/Directory/
/Host/Directory/…
/Directory/…
(Storage not supported)

It is permitted to mix domain, host, and directory names in the root file system of the Source.
To help resolve any potential name conflict, Applications should set TW_FILESYSTEM->
FileType to the appropriate value for the topmost file. If this is not done and there is a name
conflict, the Source’s default behavior must be to use the file of type TWFT_DIRECTORY or
TWFT_HOST, in that order.

For example, consider two files named “abc” in the root of a Source:

/abc/123 (abc is a domain)
/abc/789 (abc is a directory)

Change directory to the first one by setting FileType to TWFT_DOMAIN, or to the second one
by setting FileType to TWFT_DIRECTORY. The FileType for each will be discovered while
browsing the directory using DAT_GETFILEFIRST and DAT_GETFILENEXT. If the FileType is
not specified, then the Source must change to the “/abc/789” directory.

Example:

A Source supports two devices: “/Camera” and “/Disk”. If an application changes directory to
/Camera, then it can negotiate imaging parameters and transfer images in a traditional fashion.
If an application changes directory to “/Disk/abc/xyz”, then it cannot negotiate imaging
parameters (the images have already been captured); all it can do is browse the directory tree
and transfer the images it finds.

Chapter 7

7-168 TWAIN 1.9a Specification

The Application sets the new current working directory by placing in the InputName field an
absolute or relative path. The Source returns the absolute path and name of the new directory
in the OutputName field. The special filename dot “.” can be used to retrieve the name of the
current directory. The special filename dot-dot “..” can be used to change to the parent
directory. Refer to the section on File Systems for more information.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - operation denied (device not ready).
TWCC_FILENOTFOUND - specified InputName does not exist.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

 Operation Triplets

TWAIN 1.9a Specification 7-169

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_COPY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation copies a file or directory. Absolute and relative pathnames are supported. A file
may not be overwritten with this command. If an Application wishes to do this, it must first
delete the unwanted file and then reissue the Copy command.

The Application specifies the path and name of the entry to be copied in InputName. The
Application specifies the new patch and name in OutputName.

It is not permitted to copy files into the root directory.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - file cannot be deleted (root file, or protected

by Source).
TWCC_FILEEXISTS - specified OutputName already exists.
TWCC_FILENOTFOUND - InputName not found or OutputName invalid.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Chapter 7

7-170 TWAIN 1.9a Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_CREATEDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation creates a new directory within the current directory. Pathnames are not
allowed, only the name of the new directory can be specified.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the new directory in InputName.

On success, the Source returns the absolute path and name of the new directory in
OutputName.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - cannot create directory in current directory,

directories may not be created in root, or the
Source may opt to prevent the creation of new
directories in some instances, for instance if
the new directory would be too deep in the tree.

TWCC_FILEEXISTS - the specified InputName already exists.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

 Operation Triplets

TWAIN 1.9a Specification 7-171

DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_DELETE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation deletes a file or directory on the device. Pathnames are not allowed, only the
name of the file or directory to be deleted can be specified. Recursive deletion can be specified
by setting the pSourceFileSystem->Recursive to TRUE.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the entry to be deleted in InputName. There is no return
in OutputName on success.

The Application cannot delete entries in the root directory. The Application cannot delete
directories unless they are empty.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - file cannot be deleted (root file, or protected

by Source).
TWCC_FILENOTFOUND - filename not found.
TWCC_NOTEMPTY - directory is not empty, and cannot be deleted.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Chapter 7

7-172 TWAIN 1.9a Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_FORMATMEDIA, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation formats the specified storage. This operation destroys all images and sub-
directories under the selected device. Use with caution.

The Application specifies the name of the device to be deleted in InputName. There is no data
returned by this call.

The Application cannot format the root directory. Sources may opt to protect their media from
this command, so Applications must check return and condition codes.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - format denied (root directory, or protected by Source).
TWCC_FILENOTFOUND - filename not found.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

 Operation Triplets

TWAIN 1.9a Specification 7-173

DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_GETCLOSE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

The operation frees the Context field in pSourceFileSystem.

Every call to DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE must be matched
by a call to MSG_GETCLOSE to release the Context field in the pSourceFileSystem structure.

An Application may (erroneously) issue this operation at any time (even if a
MSG_GETFIRSTFILE has not been issued yet). Sources must protect themselves from such
uses. See the section on File Systems for more information on why and how this must be done.

Return Codes
TWRC_SUCCESS

TWRC_FAILURE
TWCC_BADPROTOCOL - capability not supported.
TWCC_SEQERROR - not state 4, 5 or 6.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Chapter 7

7-174 TWAIN 1.9a Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_GETFIRSTFILE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

This operation gets the first filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the first filename. InputName is ignored.
OutputName contains the absolute path and name of the file. If the Application enables the
Source at this time, and the PendingXfers.Count is non-zero, the Application will immediately
receive a MSG_XFERREADY, and the current image will be transferred.

Applications must not assume any ordering of the files delivered by the Source, with one
exception: if MSG_GETFIRSTFILE is issued in the root directory, then the operation must
return a TWFT_CAMERA device.

NB: “.” and “..” are NEVER reported by this command.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - file exists, but information about it has not

been returned.
TWCC_FILENOTFOUND - directory is empty.
TWCC_SEQERROR - not state 4, 5 or 6.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

 Operation Triplets

TWAIN 1.9a Specification 7-175

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_GETINFO, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 7

Description

This operation fills the information fields in pSourceFileSystem.

InputName contains the absolute or relative path and filename of the requested file.
OutputName returns the absolute path to the file.

Example InputName:

“abc” is valid.
“/Disk/abc” is valid.
The empty string ““ returns information about the current file (if any).
“.” returns information about the current directory.
“..” returns information about the parent directory.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - - file exists, but information about it has not

been returned.
TWCC_FILENOTFOUND - specified file does not exist.
TWCC_SEQERROR - not state 4 - 7, or no current file.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Chapter 7

7-176 TWAIN 1.9a Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_GETNEXTFILE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

This operation gets the next filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the next filename. InputName is ignored.
OutputName contains the absolute path and name of the file. If the Application enables the
Source at this time, and the PendingXfers.Count is non-zero, the Application will immediately
receive a MSG_XFERREADY, and the current image will be transferred.

A call to MSG_GETFIRSTFILE must be issued on a given directory before the first call to
MSG_GETNEXTFILE.

NB: The “.” and “..” entries are NEVER reported by this command

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - file exists, but information about it has not

been returned.
TWCC_FILENOTFOUND - directory is empty.
TWCC_SEQERROR - not state 4, 5 or 6, or invalid context (must issue

MSG_GETFILEFIRST before calling MSG_GETNEXTFILE).

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

 Operation Triplets

TWAIN 1.9a Specification 7-177

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,

MSG_RENAME, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation renames (and optionally moves) a file or directory. Absolute and relative path
names are supported. A file may not be overwritten with this command. If an Application
wishes to do this it must first delete the unwanted file, then issue the rename command.

The Application specifies the path and name of the entry to be renamed in InputName. The
Application specifies the new path and name in OutputName.

Filenames in the root directory cannot be moved or renamed.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_DENIED - file cannot be deleted (root file, or protected

by Source).
TWCC_FILEEXISTS - specified OutputName already exists.
TWCC_FILENOTFOUND - InputName not found or OutputName invalid.
TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

Chapter 7

7-178 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Application to Source Manager)

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_CLOSEDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions to State 3, if successful)

Description

When an application is finished with a Source, it must formally close the session between them
using this operation. This is necessary in case the Source only supports connection with a
single application (many desktop scanners will behave this way). A Source such as this cannot
be accessed by other applications until its current session is terminated.

Application

Reference pSourceIdentity to the application’s copy of the TW_IDENTITY structure for the
Source whose session is to be ended. The application needs to unload the Source from memory
after it is closed. The process for unloading the Source is similar to that used to unload the
Source Manager.

Source Manager

On Macintosh only—Closes the Source and removes it from memory, following receipt of
TWRC_SUCCESS from the Source.

On Windows only—Checks its internal counter to see whether any other applications are
accessing the specified Source. If so, the Source Manager takes no other action. If the closing
application is the last to be accessing this Source, the Source Manager closes the Source
(forwards this triplet to it) and removes it from memory, following receipt of TWRC_SUCCESS
from the Source.

Upon receiving the request from the Source Manager, the Source immediately prepares to
terminate execution.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

 Operation Triplets

TWAIN 1.9a Specification 7-179

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)

Call
DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_CLOSEDS, pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions Source back to the “loaded but not open” State - approximately State 3.5)

Description

Closes the Source so it can be unloaded from memory. The Source responds by doing its
shutdown and clean-up activities needed to ensure the heap will be “clean” after the Source is
unloaded. Under Windows, the Source will only be unloaded if the connection with the last
application accessing it is about to be broken. The Source will know this by its internal
“connect count” that should be maintained by any Source that supports multiple application
connects.

Source Manager

pSourceIdentity is filled from a previous MSG_OPENDS operation.

Source

Perform all necessary housekeeping in anticipation of being unloaded. Be sure to dispose of
any memory buffers that the Source has allocated locally, or that may have become the Source’s
responsibility during the course of the TWAIN session. The Source exists in a shared memory
environment. It is therefore critical that all remnants of the Source, except the entry point
(initial) code, be removed as the Source prepares to be unloaded.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_OPERATIONERROR /* Internal Source error; */
/* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

Chapter 7

7-180 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)

Call
DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_GET, pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7 (Yes, the Source must be able to return the identity before it is opened.)

Description

This operation triplet is generated only by the Source Manager and is sent to the Source. It
returns the identity structure for the Source.

Source Manager

No special set up or action required.

Source

Fills in all fields of pSourceIdentity except the Id field which is only modified by the Source
Manager. This structure was allocated by either the application or the Source Manager
depending on which one initiated the MSG_OPENDS operation for the Source.

Note: Sources should locate the code that handles initialization of the Source (responding to
MSG_OPENDS) and identification (DAT_IDENTITY / MSG_GET) in the segment first
loaded when the DLL/code resource is invoked. Responding to the identification
operation should not cause any other segments to be loaded. Code to handle all other
operations and to support the user interface should be located in code segments that
will be loaded upon demand. Remember, the Source is a “guest” of the application
and needs to be sensitive to use of available memory and other system resources. The
Source Manager’s perceived performance may be adversely affected unless the Source
efficiently handles identification requests.

Return Codes
TWRC_SUCCESS /* This operation must succeed. */

 Operation Triplets

TWAIN 1.9a Specification 7-181

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETDEFAULT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

Gets the identification information of the system default Source.

Application

No special set up or action required.

Source Manager

Fills the structure pointed to by pSourceIdentity with identifying information about the system
default Source.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_NODS /* no Sources found matching */
/* application's SupportedGroups */

TWCC_LOWMEMORY /* not enough memory to perform */
/* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Chapter 7

7-182 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETFIRST,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all
available Sources requires invocation of a series of operations. The first operation uses
MSG_GETFIRST to find the first Source on “the list” (whichever Source the Source Manager
finds first). All the following operations use DG_CONTROL / DAT_IDENTITY /
MSG_GETNEXT to get the identity information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the
MSG_GETFIRST/MSG_GETNEXT operations. Once the application has verified that the
Source is available, it can request that the Source Manager open the Source using
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. The application must not execute this
operation without first verifying the existence of the Source because the results may be
unpredictable.

Application

No special set up or action required.

Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceIdentity with the identity information
of the first Source found by the Source Manager within the TWAIN directory/folder.

 Operation Triplets

TWAIN 1.9a Specification 7-183

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_NODS /* No Sources can be found */
TWCC_LOWMEMORY /* Not enough memory to perform */

/* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Chapter 7

7-184 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETNEXT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all
available Sources requires invocation of a series of operations. The first operation uses
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST to find the first Source on “the list”
(whichever Source the Source Manager finds first). All the following operations use
MSG_GETNEXT to get the identity information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the
MSG_GETFIRST/MSG_GETNEXT operations. Once the application has verified that the
Source is available, it can request that the Source Manager open the Source using
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. The application must not execute this
operation without first verifying the existence of the Source because the results may be
unpredictable.

Application

No special set up or action required.

Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceIdentity with the identity information
of the next Source found by the Source Manager within the TWAIN directory/folder.

 Operation Triplets

TWAIN 1.9a Specification 7-185

Return Codes
TWRC_SUCCESS
TWRC_ENDOFLIST /* after MSG_GETNEXT if no more */

/* Sources */
TWRC_FAILURE

TWCC_LOWMEMORY /* not enough memory to perform */
/* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Chapter 7

7-186 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source Manager)

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_OPENDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 only (Transitions to State 4, if successful)

Description

Loads the specified Source into main memory and causes its initialization.

Application

The application may specify any available Source’s TW_IDENTITY structure in
pSourceIdentity. That structure may have been obtained using a MSG_GETFIRST,
MSG_GETNEXT, or MSG_USERSELECT operation. If the session with the Source Manager
was closed since the identity structure being used was obtained, the application must set the Id
field to 0. This will cause the Source Manager to issue the Source a new Id. The application can
have the Source Manager open the default Source by setting the ProductName field to “\0”
(Null string) and the Id field to zero.

Source Manager

Opens the Source specified by pSourceIdentity and creates a unique Id value for this Source
(under Microsoft Windows, this assumes that the Source hadn’t already been opened by
another application). This value is recorded in pSourceIdentity->Id. The Source Manager
passes the triplet on to the Source to have the remaining fields in pSourceIdentity filled in.

Upon receiving the request from the Source Manager, the Source fills in all the fields in
pSourceIdentity except for Id. If an application tries to connect to a Source that is already
connected to its maximum number of applications, the Source returns
TWRC_FAILURE/TWCC_MAXCONNECTIONS.

Warning: The Source and application must not assume that the value written into
pSourceIdentity.Id will remain constant between sessions. This value is used
internally by the Source Manager to uniquely identify applications and Sources
and to manage the connections between them. During a different session, this
value may still be valid but might be assigned to a different application or Source!
Don’t use this value directly.

 Operation Triplets

TWAIN 1.9a Specification 7-187

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_LOWMEMORY /* not enough memory to */
/* open the Source */

TWCC_MAXCONNECTIONS /* Source cannot support*/
/* another connection */

TWCC_NODS /* specified Source was */
/* not found */

TWCC_OPERATIONERROR /* internal Source error;*/
/* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_IDENTITY / MSG_GET
DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Chapter 7

7-188 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)

Call
DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_OPENDS, pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

Source is loaded but not yet open (approximately State 3.5, session transitions to State 4, if
successful).

Description

Opens the Source for operation.

Source Manager

pSourceIdentity is filled in from a previous DG_CONTROL / DAT_IDENTITY / MSG_GET
and the Id field should be filled in by the Source Manager.

Source

Initializes any needed internal structures, performs necessary checks, and loads all resources
needed for normal operation.

Windows only: Source should record a copy of *pOrigin, the application’s TW_IDENTITY
structure, whose Id field maintains a unique number identifying the application that is calling.
Sources that support only a single connection should examine pOrigin->Id for each operation to
verify they are being called by the application they acknowledge being connected with. All
requests from other applications should fail (TWRC_FAILURE /
TWCC_MAXCONNECTIONS). The Source is responsible for managing this, not the Source
Manager (the Source Manager does not know in advance how many connections the Source
will support).

Macintosh Note: Since the Source(s) and the Source Manager connected to a particular
application live within that application’s heap space, and are not shared with any other
application, the discussion about multiply-connected Sources and verifying which application
is invoking an operation is not relevant. A Source or Source Manager on the Macintosh can only
be connected to a single application, though multiple copies of a Source or the Source Manager
may be active on the same host simultaneously. These instances simply exist in different
applications’ heaps. If the instances need to communicate with one another, they might use a
special file, Gestalt selector, or other IPC mechanism.

 Operation Triplets

TWAIN 1.9a Specification 7-189

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_LOWMEMORY /* not enough memory to */
/* open the Source */

TWCC_MAXCONNECTIONS /* Source cannot support */
/* another connection */

TWCC_OPERATIONERROR /* internal Source error;*/
/* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_IDENTITY / MSG_GET

Chapter 7

7-190 TWAIN 1.9a Specification

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_USERSELECT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

This operation should be invoked when the user chooses Select Source... from the application’s
File menu (or an equivalent user action). This operation causes the Source Manager to display
the Select Source dialog. This dialog allows the user to pick which Source will be used during
subsequent Acquire operations. The Source selected becomes the system default Source. This
default persists until a different Source is selected by the user. The system default Source may
be overridden by an application (the override is local to only that application). Only Sources
that can supply data matching one or more of the application’s SupportedGroups (from the
application’s identity structure) will be selectable. All others will be unavailable for selection.

Application

If the application wants a particular Source, other than the system default, to be highlighted in
the Select Source dialog, it should set the ProductName field of the structure pointed to by
pSourceIdentity to the ProductName of that Source. This information should have been
obtained from an earlier operation using DG_CONTROL / DAT_IDENTITY /
MSG_GETFIRST, MSG_GETNEXT, or MSG_USERSELECT. Otherwise, the application should
set the ProductName field in pSourceIdentity to the null string (“\0”). In either case, the
application should set the Id field in pSourceIdentity to zero.

If the Source Manager can’t find a Source whose ProductName matches that specified by the
application, it will select the system default Source (the default that matches the
SupportedGroups of the application). This is not considered to be an error condition. No error
will be reported. The application should check the ProductName field of pSourceIdentity
following this operation to verify that the Source it wanted was opened.

Source Manager

The Source Manager displays the Select Source dialog and allows the user to select a Source.
When the user clicks the “OK” button (“Select” button in the Microsoft Windows Source
Manager) in the Select Source dialog, the system default Source (maintained by the Source
Manager) will be changed to the selected Source. This Source’s identifying information will be
written into pSourceIdentity.

 Operation Triplets

TWAIN 1.9a Specification 7-191

The “Select” button (“OK” button in the Macintosh Source Manager) will be grayed out if there
are no Sources available matching the SupportedGroups specified in the application’s identity
structure, pOrigin. The user must click the “Cancel” button to exit the Select Source dialog.
The application cannot discern from this Return Code whether the user simply canceled the
selection or there were no Sources for the user to select. If the application really wants to know
whether any Sources are available that match the specified SupportedGroups it can invoke a
MSG_GETFIRST operation and check for a successful result.

It copies the TW_IDENTITY structure of the selected Source into pSourceIdentity.

Suggestion for Source Developers: The string written in the Source’s
TW_IDENTITY.ProductName field should clearly and unambiguously identify your product or
the Source to the user (if the Source can be used to control more than one device).
ProductName contains the string that will be placed in the Select Source dialog (accompanied,
on the Macintosh, with an icon from the Source’s resource file representing the Source). It is
further suggested that the Source’s disk file name approximate the ProductName to assist the
user in equating the two.

Return Codes
TWRC_SUCCESS
TWRC_CANCEL /* User clicked cancel button - maybe there */

/* were no Sources */
TWRC_FAILURE

TWCC_LOWMEMORY /* not enough memory to perform this */
/* operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

Chapter 7

7-192 TWAIN 1.9a Specification

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application - Windows only)

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_CLOSEDSREQ, NULL);

This operation requires no data (NULL).

Valid States

5 through 7 (This operation causes the session to transition to State 5.)

Description

While the Source is enabled, the application is sending all events/messages to the Source. The
Source will use one of these events/messages to indicate to the application that it needs to be
closed.

On Windows, the Source sends this DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ to
the Source Manager to cause the Source Manager to post a private message to the application’s
event/message loop. This guarantees that the application will have an event/message to pass
to the Source Manager so it will be able to communicate the Source’s Close request back to the
application.

On Macintosh, the application simply sends Null events to the Source periodically to ensure it
has a communication carrier when needed. Therefore, this operation is not used on a
Macintosh implementation.

Source (on Windows only)

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

pDest is the TW_IDENTITY structure of the application.

Source Manager (on Windows only)

Upon receiving this triplet, the Source Manager posts a private message to the application’s
event/message loop. Since the application is forwarding all events/messages to the Source
while the Source is enabled, this creates a communication device needed by the Source. When
this private message is received by the Source Manager (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation), the Source Manager will insert a
MSG_CLOSEDSREQ into the TWMessage field on behalf of the Source.

 Operation Triplets

TWAIN 1.9a Specification 7-193

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR /* Operation invoked in invalid state */
TWCC_BADDEST /* No such application in session with*/

/* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Chapter 7

7-194 TWAIN 1.9a Specification

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_DEVICEEVENT, NULL);

This operation requires no data (NULL)

Valid States

4 through 7

Description

When enabled the source sends this message to the Application to alert it that some event has
taken place. Upon receiving this message, the Application must immediately issue a call to
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET to obtain the event information.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR - operation invoked in invalid state.
TWCC_BADDEST - no such application in session with Source.

See Also

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Capability - CAP_DEVICEEVENT

 Operation Triplets

TWAIN 1.9a Specification 7-195

DG_CONTROL / DAT_NULL / MSG_XFERREADY (from Source to Application - applies to Windows only)

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_XFERREADY, NULL);

This operation requires no data (NULL).

Valid States

5 only (This operation causes the transition to State 6.)

Description

While the Source is enabled, the application is sending all events/messages to the Source. The
Source will use one of these events/ messages to indicate to the application that the data is
ready to be transferred.

On Windows, the Source sends this DG_CONTROL / DAT_NULL / MSG_XFERREADY to the
Source Manager to cause the Source Manager to post a private message to the application’s
event/message loop. This guarantees that the application will have an event/message to pass
to the Source and the Source will be able to communicate its “transfer ready” announcement
back to the application.

On Macintosh, the application simply sends Null events to the Source periodically to ensure it
has a communication carrier when needed. Therefore, this operation is not used on a
Macintosh implementation.

Source (on Windows only)

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

pDest is the TW_IDENTITY structure of the application.

Source Manager

Upon receiving this triplet, the Source Manager posts a private message to the application’s
event/message loop. Since the application is forwarding all events/messages to the Source
while the Source is enabled, this creates a communication device needed by the Source. When
this private message is received by the Source Manager (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation), the Source Manager will insert the
MSG_XFERREADY into the TWMessage field on behalf of the Source.

Chapter 7

7-196 TWAIN 1.9a Specification

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR /* Operation invoked in invalid state */
TWCC_BADDEST /* No such application in session with*/

/* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

 Operation Triplets

TWAIN 1.9a Specification 7-197

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_CLOSEDSM, pParent);

On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s
“parent”. The variable is of type TW_INT32 and the low word of this variable must contain the
window handle.

On Macintosh - pParent = should be a 32-bit NULL value.

Valid States

3 only (causes transition back to State 2, if successful)

Description

When the application has closed all the Sources it had previously opened, and is finished with
the Source Manager (the application plans to initiate no other TWAIN sessions), it must close
the Source Manager. The application should unload the Source Manager DLL or code resource
after the Source Manager is closed—unless the application has immediate plans to use the
Source Manager again.

Application

References the same pParent parameter that was used during the “open Source Manager”
operation. If the operation returns TWRC_SUCCESS, the application should unload the Source
Manager from memory.

Source Manager

Does any housekeeping needed to prepare for being unloaded from memory. This
housekeeping is transparent to the application.

Windows only—If the Source Manager is open to at least one other application, it will clean up
just activities relative to the closing application, then return TWRC_SUCCESS. The application
will attempt to unload the Source Manager DLL. Windows will tell the application that the
unload was successful, but the Source Manager will remain active and connected to the other
application(s).

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

Chapter 7

7-198 TWAIN 1.9a Specification

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_OPENDSM, pParent);

On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s
“parent”. The variable is of type TW_INT32 and the low word of this variable must contain the
window handle.

On Macintosh - pParent = should be a 32-bit NULL value.

Valid States

2 only (causes transition to State 3, if successful)

Description

Causes the Source Manager to initialize itself. This operation must be executed before any
other operations will be accepted by the Source Manager.

Application

Windows only—The application should set the pParent parameter to point to a window
handle (hWnd) of an open window that will remain open until the Source Manager is closed. If
application can’t open the Source Manager DLL, Windows displays an error box (this error box
can be disabled by a prior call to SetErrorMode (SET_NOOPENFILEERRORBOX)).

Macintosh only—Set pParent to NULL.

Source Manager

Initializes and prepares itself for subsequent operations. Maintains a copy of pParent.

Windows only—If Source Manager is already open, Source Manager won’t reinitialize but will
retain a copy of pParent.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_LOWMEMORY /* not enough memory to perform */
/* this operation */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

 Operation Triplets

TWAIN 1.9a Specification 7-199

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PASSTHRU,MSG_PASSTHRU,

pSourcePassthru);

pSourcePassthru = A pointer to a TW_PASSTHRU structure

Valid States

4 through 7

Description

PASSTHRU is intended for the use of Source writers writing diagnostic applications. It allows
raw communication with the currently selected device in the Source.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL - capability not supported.
TWCC_SEQERROR - command could not be completed in this state.

See Also

CAP_PASSTHRU

Chapter 7

7-200 TWAIN 1.9a Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS, MSG_ENDXFER,

pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

6 and 7

When DAT_XFERGROUP is set to DG_IMAGE:

(Transitions to State 5 if this was the last transfer (pPendingXfers->Count == 0). Transitions
to State 6 if there are more transfers pending (pPendingXfers->Count != 0). To abort all
remaining transfers and transition from State 6 to State 5, use DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET.

When DAT_XFERGROUP is set to DG_AUDIO:

Transitions to State 6 no matter what the value of pPendingXfers->Count.

Description

This triplet is used to cancel or terminate a transfer. Issued in state 6, this triplet cancels the next
pending transfer, discards the transfer data, and decrements the pending transfers count. In
state 7, this triplet terminates the current transfer. If any data has not been transferred (this is
only possible during a memory transfer) that data is discarded.

The application can use this operation to cancel the next pending transfer (Source writers take
note of this). For example, after the application checks TW_IMAGEINFO (or TW_AUDIOINFO,
if transferring audio snippets), it may decide to not transfer the next image. The operation must
be sent prior to the beginning of the transfer, otherwise the Source will simply abort the current
transfer. The Source decrements the number of pending transfers.

Application

The application must invoke this operation at the end of every transfer to signal the Source that
the application has received all the data it expected. The application should send this after
receiving a TWRC_XFERDONE or TWRC_CANCEL.

No special set up or action required. Be sure to correctly track which state the Source will be in
as a result of your action. Be aware of the value in pPendingXfers->Count both before and after
the operation. Invoking this operation causes the loss of data that your user may not expect to
be lost. Be very careful and prudent when using this operation.

Source

Option #1) Fill pPendingXfers->Count with the number of transfers the Source is ready to
supply to the application, upon demand. If pPendingXfers->Count > 0 (or equals -1), transition
to State 6 and await initiation of the next transfer by the application. If pPendingXfers->Count
== 0, transition all the way back to State 5 and await the next acquisition.

 Operation Triplets

TWAIN 1.9a Specification 7-201

Option #2) Preempt the acquired data that is next in line for transfer to the application
(pending transfers can be thought of as being pushed onto a FIFO queue as acquired and
popped off the queue when transferred). Decrement pPendingXfers->Count. If already
acquired, discard the data for the preempted transfer. Update pPendingXfers->Count with the
new number of pending transfers. If this value is indeterminate, leave the value in this field at -
1. Note: -1 is not a valid value for the number of audio snippets.

Option #3) Cancel the current transfer. Discard any local buffers or data involved in the
transfer. Prepare the Source and the device for the next transfer. Decrement pPendingXfers-
>Count (donÆt decrement if already zero or -1). If there is a transfer pending, return to State 6
and prepare the Source to begin the next transfer. If no transfer is pending, return to State 5 and
await initiation of the next acquisition from the application or the user. Note: when
DAT_XFERGROUP is set to DG_AUDIO, the Source will not go lower than State 6 based on the
value of pPendingXfers->Count.

Note: If a Source supports simultaneous connections to more than one application, the
Source should maintain a separate pPendingXfers structure for each application it is
in-session with.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET
DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Capability - CAP_XFERCOUNT

Chapter 7

7-202 TWAIN 1.9a Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,

MSG_GET, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

4 through 7

Description

Returns the number of transfers the Source is ready to supply to the application, upon demand.
If DAT_XFERGROUP is set to DG_IMAGE, this is the number of images. If DAT_XFERGROUP
is set to DG_AUDIO, this is the number of audio snippets for the current image. If there is no
current image, this call must return TWRC_FAILURE / TWCC_SEQERROR.

Application

No special set up or action required.

Source

Fill pPendingXfers->Count with the number of transfers the Source is ready to supply to the
application, upon demand. This value should reflect the number of complete data blocks that
have already been acquired or are in the process of being acquired.

When DAT_XFERGROUP is set to DG_IMAGE:

If the Source is not sure how many transfers are pending, but is sure that the number is at
least one, set pPendingXfers->Count to -1. A Source connected to a device with an
automatic document feeder that cannot determine the number of pages in the feeder, or
how many selections the user may make on each page, would respond in this way. A
Source providing access to a series of images from a video camera or a data base may also
respond this way.

When DAT_XFERGROUP is set to DG_AUDIO:

-1 is not a valid value for pPendingXfers->Count.

 Operation Triplets

TWAIN 1.9a Specification 7-203

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

Capability - CAP_XFERCOUNT

Chapter 7

7-204 TWAIN 1.9a Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,

MSG_RESET, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

When DAT_XFERGROUP is set to DG_IMAGE:

6 only (Transitions to State 5, if successful)

When DAT_XFERGROUP is set to DG_AUDIO:

6 only (State remains at 6)

Description

Sets the number of pending transfers in the Source to zero.

Application

When DAT_XFERGROUP is set to DG_IMAGE:

No special set up or action required. Be aware of the state transition caused by this
operation. Invoking this operation causes the loss of data that your user may not expect to
be lost. Be very careful and prudent when using this operation. The application may need
to use this operation if an error occurs within the application that necessitates breaking off
all TWAIN sessions. This will get the application, Source Manager, and Source back to State
5 together.

When DAT_XFERGROUP is set to DG_AUDIO:

The available audio snippets are discarded, but the Source remains in State 6.

Source

Set pPendingXfers->Count to zero. Discard any local buffers or data involved in any of the
pending transfers.

When DAT_XFERGROUP is set to DG_IMAGE:

Return to State 5 and await initiation of the next acquisition from the application or the
user.

When DAT_XFERGROUP is set to DG_AUDIO:

Remain in State 6.

 Operation Triplets

TWAIN 1.9a Specification 7-205

Note: If a Source supports simultaneous sessions with more than one application, the Source
should maintain a separate pPendingXfers structure for each application it is in-
session with.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

Capability - CAP_XFERCOUNT

Chapter 7

7-206 TWAIN 1.9a Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,
 MSG_STOPFEEDER, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

6 only

Description

If CAP_AUTOSCAN is TRUE, this command will stop the operation of the scanner’s automatic
feeder. No other action is taken.

Application

The DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET command stops a session
(returning to State 5), but it also discards any images that have been captured by the scanner.
The MSG_STOPFEEDER command solves this problem by stopping the feeder, but remaining
in State 6. The application may then continue to transfer images, until pPendingXfers->Count
goes to zero.

Source

This command should only perform successfully if CAP_AUTOSCAN is TRUE. If
CAP_AUTOSCAN is FALSE, this command should return TWRC_FAILURE /
TWCC_SEQERROR.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST – no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support operation.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Capabilities - CAP_AUTOSCAN

 Operation Triplets

TWAIN 1.9a Specification 7-207

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,

MSG_GET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Returns information about the file into which the Source has or will put the acquired
DG_IMAGE or DG_AUDIO data.

Application

No special set up or action required.

Source

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->VRefNum = volume reference number

(Macintosh only)

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-208 TWAIN 1.9a Specification

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,

MSG_GETDEFAULT, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Returns information for the default DG_IMAGE or DG_AUDIO file.

Application

No special set up or action required.

Source

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->VRefNum = volume reference number

(Macintosh only)

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

 Operation Triplets

TWAIN 1.9a Specification 7-209

DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,

MSG_RESET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States
4 only

Description
Resets the current file information to the DG_IMAGE or DG_AUDIO default file information
and returns that default information..

Application
No special set up or action required.

Source
Set the following:

pSetupFile->Format = format of destination file
(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->VRefNum = volume reference number

(Macintosh only)

Note: VRefNum should be set to reflect the default file only if it already exists). Otherwise,
set this field to NULL.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-210 TWAIN 1.9a Specification

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,

MSG_SET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Sets the file transfer information for the next file transfer. The application is responsible for
verifying that the specified file name is valid and that the file either does not currently exist (in
which case, the Source is to create the file), or that the existing file is available for opening and
read/write operations. The application should also assure that the file format it is requesting
can be provided by the Source (otherwise, the Source will generate a TWRC_FAILURE /
TWCC_BADVALUE error).

Application

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->VRefNum = volume reference number

(Macintosh only)

Note: ICAP_XFERMECH or ACAP_XFERMECH (depending on the value of
DAT_XFERGROUP) must have been set to TWSX_FILE during previous capability
negotiation.

Source

Use the specified file format and file name information to transfer the next file to the
application. If any part of the information being set is wrong or missing, use the SourceÆs
default file (TWAIN.TMP in the current directory for DG_IMAGE data, or TWAIN.AUD in the
current directory for DG_AUDIO data) and return TWRC_FAILURE with
TWCC_BADVALUE. If the format and file name are OK, but a file error occurs when trying to
open the file (other than "file does not existö), return TWCC_BADVALUE and set up to use the
default file. If the specified file does not exit, create it. If the file exists and has data in it,
overwrite the existing data starting with the first byte of the file.

 Operation Triplets

TWAIN 1.9a Specification 7-211

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_BADVALUE /* Source cannot comply with one of the */

/* settings */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-212 TWAIN 1.9a Specification

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER2,

MSG_GET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States

4 through 6

Description

Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_GET operation.

Returns information about the file into which the Source has or will put the acquired
DG_IMAGE or DG_AUDIO data.

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->FileNameType = data type of FileName
(TWTY_STR1024 or TWTY_UNI512)

pSetupFile->VRefNum = volume reference number
(Macintosh only)

pSetupFile->parID = parent directory ID
(Macintosh only)

 Operation Triplets

TWAIN 1.9a Specification 7-213

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST – no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_AUDIOFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-214 TWAIN 1.9a Specification

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GETDEFAULT

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER2,

MSG_GETDEFAULT, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States

4 through 6

Description

Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_GETDEFAULT operation.

Returns information for the current DG_IMAGE or DG_AUDIO file.

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->FileNameType = data type of FileName
(TWTY_STR1024 or TWTY_UNI512)

pSetupFile->VRefNum = volume reference number
(Macintosh only)

pSetupFile->parID = parent directory ID
(Macintosh only)

 Operation Triplets

TWAIN 1.9a Specification 7-215

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST – no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_AUDIOFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-216 TWAIN 1.9a Specification

 DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER2,

MSG_RESET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States

4 only

Description

Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_RESET operation.

Resets the current file information to the DG_IMAGE or DG_AUDIO default file information
and returns that default information.

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also
responsible for deallocating this space, when done.

Source

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->FileNameType = data type of FileName
(TWTY_STR1024 or TWTY_UNI512)

pSetupFile->VRefNum = volume reference number
(Macintosh only)

pSetupFile->parID = parent directory ID
(Macintosh only)

Note: VrefNum and parID should be set to reflect the default file only if it already exists.
Otherwise set this field to NULL.

 Operation Triplets

TWAIN 1.9a Specification 7-217

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST – no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_AUDIOFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-218 TWAIN 1.9a Specification

 DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER2,
 MSG_SET, pSetupXferFile2);

pSetupXferFile2 = A pointer to a TW_SETUPFILEXFER2 structure

Valid States

4 through 6

Description

Replacement/enhancement of the DAT_SETUPFILEXFER / MSG_SET operation.

Sets the file transfer information for the next file transfer. The application is responsible for
verifying that the specified file name is valid and that the file either does not currently exist (in
which case, the Source is to create the file), or that the existing file is available for opening and
read / write operations. The application should also assure that the file format it is requesting
can be provided by the Source (otherwise, the Source will generate a TWRC_FAILURE /
TWCC_BADVALUE error).

On Windows: This is a TWAIN 1.9 feature. Sources and Applications are encouraged to use
this call instead of DAT_SETUPFILEXFER whenever both the Source and the Application are
TWAIN 1.9 compliant or higher.

On Macintosh: Sources and Applications must use this new call instead of
DAT_SETUPFILEXFER if they are compatible with TWAIN 1.9 or higher.

Application

The application must allocate the space needed for the pSetupFile->Filename field. It is also responsible
for deallocating this space, when done.

Set the following:
pSetupFile->Format = format of destination file

(DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)
(DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file
(on Windows, include the complete path name)

pSetupFile->FileNameType = data type of FileName
(TWTY_STR1024 or TWTY_UNI512)

pSetupFile->VRefNum = volume reference number
(Macintosh only)

pSetupFile->parID = parent directory ID
(Macintosh only)

Note: ICAP_XFERMECH and ACAP_XFERMECH (depending on the value of
DAT_XFERGROUP) must have been set to TWSX_FILE2 during previous capability
negotiation.

 Operation Triplets

TWAIN 1.9a Specification 7-219

Source

Use the specified file format and file name information to transfer the next file to the application. If any
part of the information is wrong or missing, use the Source’s default file (TWAIN.TMP in the current
directory for DG_IMAGE data, or TWAIN.AUD in the current directory for DG_AUDIO data) and
return TWRC_FAILURE with TWCC_BADVALUE. If the format and file name are OK, but a file error
occurs when trying to open the file (other than “file does not exist”), return TWCC_BADVALUE and set
up to use the default file. If the specified file does not exist, create it. If the file exists and has data in it,
overwrite the existing data starting with the first byte of the file.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST – no such Source in session with application.
TWCC_BADPROTOCOL - Source does not support file transfer.
TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET
DG_IMAGE / DAT_AUDIOFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT,
 ACAP_XFERMECH, ACAP_AUDIOFILEFORMAT

Chapter 7

7-220 TWAIN 1.9a Specification

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_SETUPMEMXFER, MSG_GET, pSetupMem);

pSetupMem = A pointer to a TW_SETUPMEMXFER structure.

Valid States

4 through 6

Description

Returns the Source’s preferred, minimum, and maximum allocation sizes for transfer memory
buffers. The application using buffered memory transfers must use a buffer size between
MinBufSize and MaxBufSize in their TW_IMAGEMEMXFER.Memory.Length when using the
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation. Sources may return a more
efficient preferred value in State 6 after the image size, etc. has been specified.

Application

No special set up or action required.

Source

Set the following:

pSetupMem->MinBufSize = minimum usable buffer size,
in bytes

pSetupMem->MaxBufSize = maximum usable buffer size,
in bytes (-1 means an indeterminately large buffer is acceptable)

pSetupMem->Preferred = preferred transfer buffer size, in bytes

If the Source doesn’t care about the size of any of these specifications, set the field(s) to
TWON_DONTCARE32. This signals the application that any value for that field is OK with the
Source.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_XFERMECH

 Operation Triplets

TWAIN 1.9a Specification 7-221

DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source Manager)

Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_STATUS, MSG_GET, pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States

2 through 7

Description

Returns the current Condition Code for the Source Manager.

Application

NULL references the operation to the Source Manager.

Source Manager

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes
TWRC_SUCCESS /* This operation must succeed */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

See Also

Return Codes and Condition Codes (Chapter 10)

Chapter 7

7-222 TWAIN 1.9a Specification

DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source)

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_STATUS, MSG_GET, pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States

4 through 7

Description

Returns the current Condition Code for the specified Source.

Application

pDest references a copy of the targeted Source’s identity structure.

Source

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes
TWRC_SUCCESS /* This operation must succeed */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

See Also

Return Codes and Condition Codes (Chapter 10)

 Operation Triplets

TWAIN 1.9a Specification 7-223

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE, MSG_DISABLEDS,
pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure.

Valid States

5 only (Transitions to State 4, if successful)

Description

This operation causes the Source’s user interface, if displayed during the DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS operation, to be lowered. The Source is returned
to State 4, where capability negotiation can again occur. The application can invoke this
operation either because it wants to shut down the current session, or in response to the Source
“posting” a MSG_CLOSEDSREQ event to it. Rarely, the application may need to close the
Source because an error condition was detected.

Application

References the same pUserInterface structure as during the MSG_ENABLEDS operation. This
implies that the application keep a copy of this structure locally as long as the Source is
enabled.

If the application did not display the Source’s built-in user interface, it will most likely invoke
this operation either when all transfers have been completed or aborted
(TW_PENDINGXFERS.Count = 0).

Source

If the Source’s user interface is displayed, it should be lowered. The Source returns to State 4
and is again available for capability negotiation.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Event loop information (in Chapter 3)

Chapter 7

7-224 TWAIN 1.9a Specification

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE, MSG_ENABLEDS,
pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure

Valid States

4 only (Transitions to State 5, if successful)

Description

This operation causes three responses in the Source:

• Places the Source into a “ready to acquire” condition. If the application raises the
Source’s user interface (see #2, below), the Source will wait to assert MSG_XFERREADY
until the “GO” button in its user interface or on the device is clicked. If the application
bypasses the Source’s user interface, this operation causes the Source to become
immediately “armed”. That is, the Source should assert MSG_XFERREADY as soon as it
has data to transfer.

• The application can choose to raise the Source’s built-in user interface, or not, using this
operation. The application signals the Source’s user interface should be displayed by
setting pUserInterface->ShowUI to TRUE. If the application does not want the Source’s
user interface to be displayed, or wants to replace the Source’s user interface with one of
its own, it sets pUserInterface->ShowUI to FALSE. If activated, the Source’s user
interface will remain displayed until it is closed by the user or explicitly disabled by the
application (see Note).

• Terminates Source’s acceptance of “set capability” requests from the application.
Capabilities can only be negotiated in State 4 (unless special arrangements are made
using the CAP_EXTENDEDCAPS capability). Values of capabilities can still be inquired
in States 5 through 7.

Note: Once the Source is enabled, the application must begin sending the Source every event
that enters the application’s main event loop. The application must continue to send
the Source events until it disables (MSG_DISABLEDS) the Source. This is true even if
the application chooses not to use the Source’s built-in user interface.

 Operation Triplets

TWAIN 1.9a Specification 7-225

Application

Set pUserInterface->ShowUI to TRUE to display the Source’s built-in user interface, or to
FALSE to place the Source in an “armed” condition so that it is immediately prepared to
acquire data for transfer. Set ShowUI to FALSE only if bypassing the Source’s built-in user
interface—that is, only if the application is prepared to handle all user interaction necessary to
acquire data from the selected Source.

Sources are not required to be enabled without showing their User Interface (i.e.
TW_USERINTERFACE.ShowUI = FALSE). If a Source does not support ShowUI = FALSE,
they will continue to be enabled just as if ShowUI = TRUE, but return TWRC_CHECKSTATUS.
The application can check for this Return Code and continue knowing the Source’s User
Interface is being displayed.

Watch the value of pUserInterface->ModalUI after the operation has completed to see if the
Source’s user interface is modal or modeless.

The application must maintain a local copy of pUserInterface while the Source is enabled.

Windows only—The application should place a handle (hWnd) to the window acting as the
Source’s parent into pUserInterface->hParent.

Macintosh only—Set pUserInterface->hParent to NULL.

Note: Application should establish that the Source can supply compatible
ICAP_PIXELTYPEs and ICAP_BITDEPTHs prior to enabling the Source. The
application must verify that the Source can supply data of a type it can consume. If
this operation fails, the application should notify the user that the device and
application are incompatible due to data type mismatch. If the application diligently
sets SupportedGroups in its identity structure before it tries to open the Source, the
Source Manager will, in the Select Source dialog or through the
MSG_GETFIRST/MSG_GETNEXT mechanism, filter out the Sources that don’t match
these SupportedGroups.

Source

If pUserInterface->ShowUI is TRUE, the Source should display its user interface and wait for
the user to initiate an acquisition. If pUserInterface->ShowUI is FALSE, the Source should
immediately begin acquiring data based on its current configuration (a device that requires the
user to push a button on the device, such as a hand-scanner, will be “armed” by this operation
and will assert MSG_XFERREADY as soon as the Source has data ready for transfer). The
Source should fail any attempt to set a capability value (TWRC_FAILURE /
TWCC_SEQERROR) until it returns to State 4 (unless an exception approval exists via a
CAP_EXTENDEDCAPS agreement).

Set pUserInterface->ModalUI to TRUE if your built-in user interface is modal. Otherwise, set it
to FALSE.

Chapter 7

7-226 TWAIN 1.9a Specification

Note: While the Source’s user interface is raised, the Source is responsible for presenting the
user with appropriate progress indicators regarding the acquisition and transfer
processes unless the application has set CAP_INDICATORS to FALSE. The Source
must also report errors to the user (without regard for the settings of
CAP_INDICATORS and ShowUI, i.e. they may be set to FALSE and errors still must
be reported).

 It is strongly recommended that all Sources support being enabled without their User
Interface if the application requests (TW_USERINTERFACE.ShowUI = FALSE). But if
your Source cannot be used without its User Interface, it should enable showing the
Source User Interface (just as if ShowUI = TRUE) but return TWRC_CHECKSTATUS.
All Sources, however, must support the CAP_UICONTROLLABLE. This capability
reports whether or not a Source allows ShowUI = FALSE. An application can use this
capability to know whether the Source-supplied user interface can be suppressed
before it is displayed.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS /* Source cannot enable */

/* without User Interface */
/* so it enabled with the */
/* User Interface. */

TWRC_FAILURE
TWCC_BADDEST /* No such Source in-session */

/* with application */
TWCC_LOWMEMORY /* Not enough memory to open */

/* the Source */
TWCC_OPERATIONERROR /* Internal Source error; */

/* handled by the Source */
TWCC_SEQERROR /* Operation invoked in */

/* invalid state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Capability - CAP_INDICATORS

Event loop information (in Chapter 3)

 Operation Triplets

TWAIN 1.9a Specification 7-227

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE,
MSG_ENABLEDSUIONLY, pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure.

Valid States

4 only (transitions to State 5, if successful)

Description

This operation is very similar to DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS
operation except that no image transfer will take place. This operation is used by applications
that wish to display the source user interface to allow the user to manipulate the sources
current settings for DPI, paper size, etc. but not acquire an image. The ShowUI member of the
TW_USERINTERFACE structure is ignored since this operations only purpose is to display the
source UI. The other members of the TW_USERINTERFACE structure have the same meaning
as in the DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS operation.

This operation has the following effects.

1. The source transitions from state 4 to state 5. The source will display its user interface
dialog but will not have a scan button (unless its only purpose is to preview the image).

2. The application must begin sending the Source every event that enters the applications
main event loop. This mechanism is the same as in the MSG_ENABLEDS operation.

3. When the user hits OK or cancel from the source user interface dialog the source will
transition back to state 4 and return either MSG_CLOSEDSOK or MSG_CLOSEDSREQ
in the TWMessage field of the TW_EVENT structure that the application has passed
along to the source.

Chapter 7

7-228 TWAIN 1.9a Specification

DG_CONTROL / DAT_XFERGROUP / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_XFERGROUP, MSG_GET, pXferGroup);

pXferGroup = A pointer to a TW_UINT32 value.

Valid States

4 through 6

Description

Returns the Data Group (the type of data) for the upcoming transfer. The Source is required to
only supply one of the DGs specified in the SupportedGroups field of pOrigin.

Application

Should have previously (during a DG_CONTROL / DAT_PARENT / MSG_OPENDSM) set
pOrigin. SupportedGroups to reflect the DGs the application is interested in receiving from a
Source. Since DG_xxxx identifiers are bit flags, the application can perform a bitwise OR of
DG_xxxx constants of interest to build the SupportedGroups field (this is appropriate when
more kinds of data than DG_IMAGE are available).

Note: Version 1.x of the Toolkit defines DG_IMAGE and DG_AUDIO as the sole Data
Groups (DG_CONTROL is masked from any processing of SupportedGroups). Future
versions of TWAIN may define support for other DGs.

Source

Set pXferGroup to the DG_xxxx constant that identifies the type of data that is ready for
transfer from the Source (DG_IMAGE is the only non-custom Data Group defined in TWAIN
version 1.x).

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_CONTROL / DAT_XFERGROUP / MSG_SET

 Operation Triplets

TWAIN 1.9a Specification 7-229

DG_CONTROL / DAT_XFERGROUP / MSG_SET

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_XFERGROUP,

MSG_SET, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_UINT32 structure

Valid States

6 only

Description

The transfer group determines the kind of data being passed from the Source to the
Application. By default a TWAIN Source must default to DG_IMAGE. Currently the only
other data group supported is DG_AUDIO, which is a feature supported by some digital
cameras.

An Application changes the data group in State 6 to indicate that it wants to transfer any audio
data associated with the current image. The transfers follow the typical TWAIN State 6 –
State 7 – State 6 pattern for each audio snippet transferred. When the application is done
transferring audio data it must change back to DG_IMAGE in order to move on to the next
image or to end the transfers and return to State5.

Return Codes
TWRC_SUCCESS

TWRC_FAILURE
 TWCC_BADDEST – no such Source in session with application.
 TWCC_BADPROTOCOL - capability not supported.
 TWCC_SEQERROR - not state 6.

See Also

DG_CONTROL / DAT_XFERGROUP/ MSG_GET

Chapter 7

7-230 TWAIN 1.9a Specification

DG_IMAGE / DAT_CIECOLOR / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_CIECOLOR,

MSG_GET, pCIEColor);

pCIEColor = A pointer to a TW_CIECOLOR structure.

Valid States

4 through 6

Description

Background - The DAT_CIECOLOR data argument type is used to communicate the
parametrics for performing a transformation from any arbitrary set of tri-stimulus values into
CIE XYZ color space. Color data stored in this format is more readily manipulated
mathematically than some other spaces. See Appendix A for more information about the
definitions and data structures used to describe CIE color data within TWAIN.

This operation causes the Source to report the currently active parameters to be used in
converting acquired color data into CIE XYZ.

Application

Prior to invoking this operation, the application should establish that the Source can provide
data in CIE XYZ form. This can be determined by invoking a MSG_GET on ICAP_PIXELTYPE.
If TWPT_CIEXYZ is one of the supported types, then these operations are valid. The
application can specify that transfers should use the CIE XYZ space by invoking a MSG_SET
operation on ICAP_PIXELTYPE using a TW_ONEVALUE container structure whose value is
TWPT_CIEXYZ.

No special set up is required. Invoking this operation following the transfer (after the Source is
back in State 6) will guarantee that the exact parameters used to convert the image are reported.

Source

Fill pCIEColor with the current values applied in any conversion of image data to CIE XYZ. If
no values have been set by the application, fill the structure with either the values calculated for
this image or the Source’s default values, whichever most accurately reflect the state of the
Source.

 Operation Triplets

TWAIN 1.9a Specification 7-231

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support the */
/* CIE descriptors */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

Capability - ICAP_PIXELTYPE

Appendix A

Chapter 7

7-232 TWAIN 1.9a Specification

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_EXTIMAGEINFO,
MSG_GET,pExtImageInfo);

pExtImageInfo = A pointer to a TW_EXTIMAGEINFO structure.

Valid States

7 only, after receiving TWRC_XFERDONE

Description

This operation is used by the application to query the data source for extended image
attributes, .e.g. bar codes found on a page. The extended image information will be returned in
a TW_EXTIMAGEINFO structure.

Application

To query extended image information, set the pExtImageInfo fields as follows:

The Application will allocate memory for the necessary container structure, the source will fill
the values, and then application will free it up.

pExtImageInfo->NumInfos = Desired number of information;
pExtImageInfo->Info[0].InfoID = TWEI_xxxx;
pExtImageInfo->Info[1].InfoID = TWEI_xxxx;

Source

If the application requests information that the Source does not recognize, the Source should
put TWRC_INFONOTSUPPORTED in the RetCode field of TW_INFO structure.

pExtImageInfo->Info[0].RetCode = TWRC_INFONOTSUPPORTED;

If you support the capability, fill in the fields allocating extra memory if necessary. For
example, for TWEI_BARCODEX:

pExtImageInfo->Info[0].RetCode = TWRC_SUCCESS;
pExtImageInfo->Info[0].ItemType = TWTY_UINT32;
pExtImageInfo->Info[0].NumItems = 1;
pExtImageInfo->Info[0].Item = 20;

 Operation Triplets

TWAIN 1.9a Specification 7-233

For TWEI_FORMTEMPLATEMATCH:

pExtImageInfo->Info[0].RetCode = TWRC_SUCCESS;
pExtImageInfo->Info[0].ItemType = TWTY_STR255;
pExtImageInfo->Info[0].NumItems = 1;

For handle (Application set TWMF_HANDLE),

pExtImageInfo->Info[0].Item = GlobalAlloc(GHND, sizeof(TW_STR255));

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support extended image */
/* information */

TWCC_SEQERROR /* Not State 7, or in State 7 but TWRC_XFERDONE */
/* has not been received yet */

See Also

Capability ICAP_EXTIMAGEINFO

Chapter 7

7-234 TWAIN 1.9a Specification

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_GRAYRESPONSE, MSG_RESET, pResponse);

pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States
4 only

Description

Background - The two DAT_GRAYRESPONSE operations allow the application to specify a
transfer curve that the Source should apply to the grayscale it acquires. This curve should be
applied to the data prior to transfer. The Source should maintain an “identity response curve”
to be used when it is MSG_RESET.

The MSG_RESET operation causes the Source to use its “identity response curve.” The identity
curve causes no change in the values of the captured data when it is applied.

Application

No special action.

Source

Apply the identity response curve to all future grayscale transfers. This means that the Source
will transfer the grayscale data exactly as acquired.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* grayscale response curves */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Capability - ICAP_PIXELTYPE

 Operation Triplets

TWAIN 1.9a Specification 7-235

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_GRAYRESPONSE, MSG_SET, pResponse);

pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States

4 only

Description

Background - The two DAT_GRAYRESPONSE operations allow the application to specify a
transfer curve that the Source should apply to the grayscale it acquires. This curve should be
applied to the data prior to transfer. The Source should maintain an “identity response curve”
to be used when it is MSG_RESET. This identity curve should cause no change in the values of
the data it is applied to.

This operation causes the Source to transform any grayscale data according to the response
curve specified.

Application

All three elements of the response curve for any given index should hold the same value (the
curve is stored in a TW_ELEMENT8 which contains three “channels” of data). The Source may
not support this operation. The application should be diligent to examine the return code from
this operation.

Source

Apply the specified response curve to all future grayscale transfers. The transformation should
be applied before the data is transferred.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* grayscale response curves */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Capability - ICAP_PIXELTYPE

Chapter 7

7-236 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEFILEXFER, MSG_GET, NULL);

This operation acts on NULL data. File information can be set with the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 /
MSG_SET operation.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via
the disk-file transfer mechanism. It causes the transfer to begin.

Application

No special set up or action required. Application should have already invoked the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL /
DAT_SETUPFILEXFER2 / MSG_SET operation unless the Source’s default transfer format and
file name (typically, TWAIN.TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Notes: If the application is planning to receive multiple images from the Source while using
the Source’s default file name, the application should plan to pause between transfers
and copy the file just written. The Source will overwrite the file unless it is instructed
to write to a different file.

 Applications can specify a unique file for each transfer using DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2
/ MSG_SET operation in State 6 or 5 (and 4, of course).

 Operation Triplets

TWAIN 1.9a Specification 7-237

Source

Acquire the image data, format it, create any appropriate header information, and write
everything into the file specified by the previous DG_CONTROL / DAT_SETUPFILEXFER /
MSG_SET or the DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET operation, and close
the file.

Handling Possible File Conditions:

• If the application did not set conditions up using the DAT_SETUPFILEXFER / MSG_SET
operation during this session, use your own default file name, file format, and location
for the created file.

• If the specified file already exists, overwrite the file in place.

• If the specified file does not exist, create the file.

• If the specified file exists and cannot be accessed, or a system error occurs while writing
the file, report the error to the user and return TWRC_FAILURE with
TWCC_OPERATIONERROR. Stay in State 6. The file contents are invalid. The image
whose transfer failed is still a pending transfer so do not decrement
TW_PENDINGXFERS.Count.

• If the file is written successfully, return TWRC_XFERDONE.

• If the user cancels the transfer, return TWRC_CANCEL.

Return Codes
TWRC_XFERDONE
TWRC_CANCEL
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_OPERATIONERROR /* Failure in the Source -- */
/* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET,

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT

Chapter 7

7-238 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEINFO, MSG_GET,pImageInfo);

pImageInfo = A pointer to a TW_IMAGEINFO structure.

Valid States

6 and 7 (State 7 only after receiving TWRC_XFERDONE)

Description

When called in State 6, this operation provides to the application general image description
information about the image about to be transferred.

When called in State 7, this operation provides the Application with specific image description
information about the current image that has just been transferred. It is important during a
Memory transfer to call this triplet only after TWRC_XFERDONE is received, since that is the
only time the Source will know all the final image information.

The same data structure type is used regardless of the mechanism used to transfer the image
(Native, Disk File, or Buffered Memory transfer).

Application

The Application can use this operation to check the parameters of the image before initiating
the transfer during State 6, or to clarify image parameters during State 7 after the transfer is
complete.

Applications may inform Sources that they accept -1 value for ImageHeight/ImageWidth by
setting the ICAP_UNDEFINEDIMAGESIZE capability to TRUE.

Should the Application decide to invoke any Source features that allow the image description
information to change during scanning (such as ICAP_UNDEFINEDIMAGESIZE) and still
wish to transfer in Buffered memory mode, a DG_CONTROL/DAT_IMAGEINFO/MSG_GET
call must be made in State 7 after receiving TWRC_XFERDONE to properly interpret the image
data. This is not the default behavior of the Source.

Note that the speed at which the Application supplies buffers may determine the scanning
speed.

 Operation Triplets

TWAIN 1.9a Specification 7-239

Source

During State 6 - Fills in all fields in pImageInfo. All fields are filled in as you would expect
with the following exceptions:

XResolution or YResolution
Set to -1 if the device creates data with no inherent resolution (such as a digital camera).

ImageWidth
Set to -1 if the image width to be acquired is unknown (such as when using a hand-held
scanner and dragging left-to-right) , and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE. In this case the Source must transfer the
image in tiles.

ImageLength
ImageLength—Set to -1 if the image length to be acquired is unknown (such as when
using a hand-held scanner and dragging top-to-bottom), and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

During State 7 - Fills in all fields in pImageInfo. All fields are filled in as during State 6, except
ImageWidth and ImageLength MUST be valid. Source shall return TWRC_SEQERROR if call is
made before TWRC_XFERDONE is sent.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
/* application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Capabilities - ICAP_BITDEPTH, ICAP_COMPRESSION, ICAP_PIXELTYPE,
ICAP_PLANARCHUNKY, ICAP_XRESOLUTION, ICAP_YRESOLUTION

Chapter 7

7-240 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_GET, pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 through 6

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

The MSG_GET operation describes both the size and placement of the image on the original
“page”. The coordinates on the original page and the extents of the image are expressed in the
unit of measure currently negotiated for ICAP_UNITS (default is inches).

The outline of the image is expressed by a “frame.” The Left, Top, Right, and Bottom edges of
the frame are stored in pImageLayout->Frame. These values place the frame within the
original page. All measurements are relative to the page’s “upper-left” corner. Define “upper-
left” by how the image would appear on the computer’s screen before any rotation or other
position transform is applied to the image data. This origin point will be apparent for most
Sources (although folks working with satellites or radio telescopes may be at a bit of a loss).

Finally pImageLayout optionally includes information about which frame on the page, which
page within a document, and which document the image belongs to. These fields were
included mostly for future versions which could merge more than one type of data. A more
immediate use might be for an application that needs to keep track of which frame on the page
an image came from while acquiring from a Source that can supply more than one image from
the same page at the same time. The information in this structure always describes the current
image. To set multiple frames for any page simultaneously, reference ICAP_FRAMES.

Application

No special set up or action required, unless the current units of measure are unacceptable. In
that case, the application must re-negotiate ICAP_UNITS prior to invoking this operation.
Remember to do this in State 4—the only state wherein capabilities can be set or reset.

Beyond supplying possibly interesting position information on the image to be transferred, the
application can use this structure to constrain the final size of the image and to relate the image
within a series of pages or documents (see the DG_IMAGE / DAT_IMAGELAYOUT /
MSG_SET operation).

 Operation Triplets

TWAIN 1.9a Specification 7-241

Source

Fill all fields of pImageLayout. Most Sources will set FrameNumber, PageNumber, and
DocumentNumber to 1.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - Many such as ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

Chapter 7

7-242 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_GETDEFAULT,
pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 through 6

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

This operation returns the default information on the layout of an image. This is the size and
position of the image that will be acquired from the Source if the acquisition is started with the
Source (and the device it is controlling) in its power-on state (for instance, most flatbed
scanners will capture the entire bed).

Application

No special set up or action required.

Source

Fill in all fields of pImageLayout with the device’s power-on origin and extents. Most Sources
will set FrameNumber, PageNumber, and DocumentNumber to 1.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

 Operation Triplets

TWAIN 1.9a Specification 7-243

DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_RESET, pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 only

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

This operation sets the image layout information for the next transfer to its default settings.

Application

No special set up or action required. Ascertain the current settings of ICAP_ORIENTATION,
ICAP_PHYSICALWIDTH, and ICAP_PHYSICALHEIGHT if you don’t already know this
device’s power-on default values.

Source

Reset all the fields of the structure pointed at by pImageLayout to the device’s power-on origin
and extents. There is an implied resetting of ICAP_ORIENTATION, ICAP_PHYSICALWIDTH,
and ICAP_PHYSICALHEIGHT to the device’s power-on default values.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

Chapter 7

7-244 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_SET, pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 only

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image
on the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

This operation sets the layout for the next image transfer. This allows the application to specify
the physical area to be acquired during the next image transfer (for instance, a frame-based
application would pass to the Source the size of the frame the user selected within the
application—the helpful Source would present a selection region already sized to match the
layout frame size).

If the application and Source have negotiated one or more frames through ICAP_FRAMES, the
frame set with this operation will only persist until the transfer following this one. Otherwise,
the frame will persist as the current frame for the remainder of the session (unless superseded
by negotiation on ICAP_FRAMES or another operation on DAT_IMAGELAYOUT overrides it).

The application writer should note that setting these values is a request. The Source should
first try to match the requested values exactly. Failing that, it should approximate the
requested values as closely as it can—extents of the approximated frame should at least equal
the requested extents unless the device cannot comply. The Source should return
TWRC_CHECKSTATUS if the actual values set in pImageLayout->Frame are greater than or
equal to the requested values in both extents. If one or both of the requested values exceed the
Source’s available values, the Source should return TWRC_FAILURE with
TWCC_BADVALUE. The application should check for these return codes and perform a
MSG_GET to verify that the values set by the Source are acceptable. The application may
choose to cancel the transfer if Source could not set the layout information closely enough to the
requested values.

Application

Fill in all fields of pImageLayout. Especially important is the Frame field whose values are
expressed in ICAP_UNITS. If the application doesn’t care about one or more of the other fields,
be sure to set them to -1 to prevent confusion. If the application only cares about the extents of
the Frame, and not about the origin on the page, set the Frame.Top and Frame.Left to zero.
Otherwise, the application can specify the location on the page where the Source should begin
acquiring the image, in addition to the extents of the acquired image.

 Operation Triplets

TWAIN 1.9a Specification 7-245

Source

Use the values in pImageLayout as the Source’s current image layout information. If you are
unable to set the device exactly to the values requested in the Frame field, set them as closely as
possible, always snapping to a value that will result in a larger frame, and return
TWRC_CHECKSTATUS to the application.

If the application has set Frame.Top and Frame.Left to a non-zero value , set the origin for the
image to be acquired accordingly. If possible, the Source should consider reflecting these
settings in the user interface when it is raised. For instance, if your Source presents a pre-scan
image, consider showing the selection region in the proper location and with the proper size
suggested by the settings from this operation.

If the requested values exceed the maximum size the Source can acquire, set the
pImageLayout->Frame values used within the Source to the largest extent possible within the
axis of the offending value. Return TWRC_FAILURE with TWCC_BADVALUE.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS /* Source approximated the requested*/

/* values */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_BADVALUE /* Specified Layout values illegal */
/* for Source */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS

Chapter 7

7-246 TWAIN 1.9a Specification

DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEMEMFILEXFER, MSG_GET,

pImageMemXfer);

pImageMemXfer = A pointer to a TW_IMAGEMEMXFER structure.

File format information can be set with the DG_CONTROL / DAT_SETUPFILEXFER /
MSG_SET operation.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via
the Memory-File transfer mechanism.

This operation supports the transfer of successive blocks of image data from the Source into one
or more main memory transfer buffers. These buffers are allocated and owned by the
application. The application should repeatedly invoke this operation while TWRC_SUCCESS is
returned by the Source.

Application

No special set up or action required. The application should have already invoked the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET operation unless the Source’s default file
format is acceptable to the application (the filename is not used, since this transfer is being done
in memory). The DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation should be
used to determine the valid range of sizes for transferring the image. The application need only
invoke both of these operations once per image transferred.

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area
while the complete image is assembled elsewhere (on disk, for instance).

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAILURE/TWCC_BADVALUE.

Once the buffers have been set up, the application should fill pImageMemXfer-
>Memory.Length with the actual size (in bytes) of each memory buffer (which are, of course, all
the same size).

Notes: Applications can specify a unique file format for each transfer using DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET in State 6 or 5 (and 4, of course). Also note (can’t
emphasize this enough) that though the images are being transferred in complete image
formats, they are memory transfers, and will be chunked just like a DG_IMAGE /
DAT_IMAGEMEMXFER / MSG_GET operation.

 Operation Triplets

TWAIN 1.9a Specification 7-247

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The
application should do its best to allocate transfer buffers of the size “preferred” by the Source.
This will enhance the chances for superior transfer performance. The buffer size must be
between MinBufSize and MaxBufSize as reported by the Source. Further, the buffers must
contain an even number of bytes. Memory buffers must be double-word aligned and should be
padded with zeros at the end of each raster line.

There is no concept of striping or tiling using this operation. Data is transferred in generic
chucks, which, depending on the file format, may result in partial header or footer information
being sent in any given transaction. Applications are advised to avoid parsing the image
format data until all of the blocks have been transferred

Source

If the application did not set conditions up using the DAT_SETUPFILEXFER / MSG_SET
operation during this session, use your own default file format for the transfer.

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAILURE/TWCC_BADVALUE and remain in State 6.

If the buffer is of an acceptable size, fill in all fields of pImageMemXfer except
pImageMemXfer->Memory. The Source must write the data block into the buffer referenced by
pImageMemXfer->Memory.TheMem. Store the actual number of bytes written into the buffer
in pImageMemXfer->BytesWritten. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the
Source needs to terminate the transfer before the last buffer is written (as when the user aborts
the transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last
buffer has been written. Following completion of the transfer, either after all the data has been
written or the transfer has been canceled, remain in State 7 until explicitly transitioned back to
State 6 by the application (DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER).

If TWRC_FAILURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still
pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the
image that was being transferred and assure that any temporary variable and local buffer
allocations are eliminated. The Source should be wary of allocating large temporary buffers or
variables. Doing so may disrupt or even disable the transfer process. The application should be
aware of the possible needs of the Source to allocate such space, however, and consider
allocating all large blocks of RAM needed to support the transfer prior to invoking this
operation. This may be especially important for devices that create image transfers of
indeterminate size—such as hand-held scanners.

Chapter 7

7-248 TWAIN 1.9a Specification

Return Codes
TWRC_SUCCESS /* Source done transferring the specified block */
TWRC_XFERDONE /* Source done transferring the specified image */
TWRC_CANCEL /* User aborted the transfer from the Source */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADVALUE /* Size of buffer did not match TW_SETUPMEMXFER */
TWCC_OPERATIONERROR /* Failure in the Source -- transfer invalid */
TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET,

Capabilities – ICAP_COMPRESSION, ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT

 Operation Triplets

TWAIN 1.9a Specification 7-249

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEMEMXFER, MSG_GET, pImageMemXfer);

pImageMemXfer = A pointer to a TW_IMAGEMEMXFER structure.

Valid States

6 and 7 (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via
the Buffered Memory transfer mechanism.

This operation supports the transfer of successive blocks of image data (in strips or, optionally,
tiles) from the Source into one or more main memory transfer buffers. These buffers (for strips)
are allocated and owned by the application. For tiled transfers, the source allocates the buffers.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by
the Source.

Application

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area
while the complete image is assembled elsewhere (on disk, for instance).

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The
application should do its best to allocate transfer buffers of the size “preferred” by the Source.
This will enhance the chances for superior transfer performance. The buffer size must be
between MinBufSize and MaxBufSize as reported by the Source. Further, the buffers must
contain an even number of bytes. Memory buffers must be double-word aligned and should be
padded with zeros at the end of each raster line.

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAILURE/TWCC_BADVALUE.

Once the buffers have been set up, the application should fill
pImageMemXfer->Memory.Length with the actual size (in bytes) of each memory buffer
(which are, of course, all the same size).

Windows only—The buffers should be allocated in global memory.

Source

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAILURE/TWCC_BADVALUE and remain in State 6.

Chapter 7

7-250 TWAIN 1.9a Specification

If the buffer is of an acceptable size, fill in all fields of pImageMemXfer except
pImageMemXfer->Memory. The Source must write the data block into the buffer referenced by
pImageMemXfer->Memory.TheMem. Store the actual number of bytes written into the buffer
in pImageMemXfer->BytesWritten. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the
Source needs to terminate the transfer before the last buffer is written (as when the user aborts
the transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last
buffer has been written. Following completion of the transfer, either after all the data has been
written or the transfer has been canceled, remain in State 7 until explicitly transitioned back to
State 6 by the application (DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER).

If TWRC_FAILURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still
pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the
image that was being transferred and assure that any temporary variable and local buffer
allocations are eliminated. The Source should be wary of allocating large temporary buffers or
variables. Doing so may disrupt or even disable the transfer process. The application should
be aware of the possible needs of the Source to allocate such space, however, and consider
allocating all large blocks of RAM needed to support the transfer prior to invoking this
operation. This may be especially important for devices that create image transfers of
indeterminate size—such as hand-held scanners.

Return Codes
TWRC_SUCCESS /* Source done transferring */

/* the specified block */
TWRC_XFERDONE /* Source done transferring */

/* the specified image */
TWRC_CANCEL /* User aborted the transfer from */

/* the Source */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/*with application */

TWCC_BADVALUE /* Size of buffer did not */
/* match TW_SETUPMEMXFER */

TWCC_OPERATIONERROR /* Failure in the Source-- */
/* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_TILES, ICAP_XFERMECH

 Operation Triplets

TWAIN 1.9a Specification 7-251

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGENATIVEXFER, MSG_GET, pHandle);

pHandle = A pointer to a variable of type TW_UINT32.

Windows - This 32 bit integer is a handle variable to a DIB (Device Independent Bitmap)
located in memory.

Macintosh - This 32-bit integer is a handle to a Picture (a PicHandle). It is a QuickDraw picture
located in memory.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER
operation).

Description

Causes the transfer of an image’s data from the Source to the application, via the Native
transfer mechanism, to begin. The resulting data is stored in main memory in a single block.
The data is stored in Picture (PICT) format on the Macintosh and as a device-independent
bitmap (DIB) under Microsoft Windows. The size of the image that can be transferred is
limited to the size of the memory block that can be allocated by the Source.

Note: This is the default transfer mechanism. All Source’s support this mechanism. The
Source will use this mechanism unless the application explicitly negotiates a different
transfer mechanism with ICAP_XFERMECH.

Application

The application need only invoke this operation once per image. The Source allocates the
largest block available and transfers the image into it. If the image is too large to fit, the Source
may resize the image. Read the DIB header or check the picFrame in the Picture to determine if
this happened. The application is responsible for deallocating the memory block holding the
Native-format image.

Windows only—Set pHandle pointing to a handle to a device-independent bit map (DIB) in
memory. The Source will allocate the image buffer and return the handle to the address
specified..

Macintosh only—Set pHandle pointing to a handle to a Picture in memory. The Source will
allocate the image buffer at the memory location referenced by the handle.

Chapter 7

7-252 TWAIN 1.9a Specification

Note: This odd combination of pointer and handle to reference the image data block was
used to assure that the allocated memory object would be relocatable under Microsoft
Windows, Macintosh, and UNIX. A handle was required for this task on both the
Macintosh and under Microsoft Windows; though pointers are inherently relocatable
under UNIX. Rather than disturb the entry points convention that the data object is
always referenced by a pointer, it was decided to have that pointer reference the
relocatable handle. A handle in UNIX is typecast to a pointer.

Source

Allocate a single block of memory to hold the image data and write the image data into it using
the appropriate format for the operating environment. The source must assure that the
allocated block will be accessible to the application. Place the handle of the allocated block in
the TW_UINT32 pointed to by pHandle.

Microsoft Windows: Format the data block as a DIB. Use GlobalAlloc or equivalent under
windows. Under 16 bit Microsoft Windows, place the handle in the low word of the
TW_UINT32. The following assignment will work in either Win16 or Win32:

(HGLOBAL FAR *) pHandle = hDIB;

See the Windows SDK documentation under Structures: BIMAPINFO, BITMAPINFOHEADER,
RGBQUAD. See also “DIBs and their use” by Ron Gery, in the Microsoft Development Library
(MSDN CD).

Notes:

• Do not use BITMAPCOREINFO or BIMAPCOREHEADER as these are for OS/2
compatibility only.

• Always follow the BITMAPINFOHEADER with the color table and only save 1, 4, or 8
bit DIBs

• Color table entries are RGBQUADs, which are stored in memory as BGR not RGB.

• For 24 bit color DIBs, the “pixels” are also stored in BGR order, not RGB.

• DIBs are stored ‘upside-down’ - the first pixel in the DIB is the lower-left corner of the
image, and the last pixel is the upper-right corner.

• DIBs can be larger than 64K, but be careful, a 24 bit pixel can straddle a 64K boundary!

• Pixels in 1, 4, and 8 bit DIBs are “always” color table indices, you must index through the
color table to determine the color value of a pixel.

Macintosh: Format the data block as a PICT, preferably using standard system calls.

 Operation Triplets

TWAIN 1.9a Specification 7-253

Microsoft Windows and Macintosh: If the allocation fails, it is recommended that you allow the
user the option to re-size the image to fit within available memory or to cancel the transfer
(assuming that the Source user interface is displayed). If the user chooses to cancel the transfer,
return TWRC_CANCEL. If the user wants to re-size the image, the Source might choose to
blindly crop the image, clip a selection region to the maximum supported size for the current
memory configuration, or allow the user to re-acquire the image altogether. The user will
usually feel more in control if you provide one or both of the last two options, but the first may
make the most sense for your Source.

If the allocation fails and the image cannot be clipped, return TWRC_FAILURE and remain in
State 6. Set the pHandle to NULL. The image whose transfer failed is still pending transfer.
Do not decrement TW_PENDINGXFERS.Count.

Return Codes
TWRC_XFERDONE /* Source done transferring the */

/* specified block */
TWRC_CANCEL /* User aborted the transfer */

/* within the Source */
TWRC_FAILURE

TWCC_BADDEST /* No such Source in session */
/* with application */

TWCC_LOWMEMORY /* Not enough memory for */
/* image--cannot crop to fit */

TWCC_OPERATIONERROR /* Failure in the Source-- */
/* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

See Also

DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capability - ICAP_XFERMECH

Chapter 7

7-254 TWAIN 1.9a Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_GET, pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 through 6

Description

Causes the Source to return the parameters that will be used during the compression of data
using the JPEG algorithms.

All the information that is reported by the MSG_GET operation will be available in the header
portion of the JPEG data. Transferring JPEG-compressed data through memory buffers is
slightly different than other types of buffered transfers. The difference is that the JPEG-
compressed image data will be prefaced by a block of uncompressed information—the JPEG
header. This header information contains all the information that is returned from the
MSG_GET operation. The compressed image information follows the header. The Source
should return the header information in the first transfer. The compressed image data will then
follow in the second through the final buffer. If the application is allocating the buffers, it
should assure that the buffer size for transfer of the header is large enough to contain the
complete header.

Application

The application allocates the TW_JPEGCOMPRESSION structure.

Source

Fill pCompData with the parameters that will be applied to the next JPEG-compression
operation. The Source must allocate memory for the contents of the pointer fields pointed to
within the structure (i.e. QuantTable, HuffmanDC, and HuffmanAC).

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data compression */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capability - ICAP_COMPRESSION

 Operation Triplets

TWAIN 1.9a Specification 7-255

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_GETDEFAULT,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 through 6

Description

Causes the Source to return the power-on default values applied to JPEG-compressed data
transfers.

Application

The application allocates the TW_JPEGCOMPRESSION structure.

Source

Fill in pCompData with the power-on default values. The Source must allocate memory for the
contents of the pointer fields pointed to within the structure (i.e. QuantTable, HuffmanDC and
HuffmanAC). The Source should maintain meaningful default values.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data compression */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

Chapter 7

7-256 TWAIN 1.9a Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_RESET,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 only

Description

Return the Source to using its power-on default values for JPEG-compressed transfers.

Application

No special action. May want to perform a MSG_GETDEFAULT if you’re curious what the new
values might be.

Source

Use your power-on default values for all future JPEG-compressed transfers. The Source should
maintain meaningful default values for all parameters.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data compression */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

 Operation Triplets

TWAIN 1.9a Specification 7-257

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_SET, pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 only

Description

Allows the application to configure the compression parameters to be used on all future JPEG-
compressed transfers during the current session. The application should have already
established that the requested values are supported by the Source.

Application

Fill pCompData. Write TWON_DONTCARE16 into the numeric fields that don’t matter to the
application. Write NULL into the table fields that should use the default tables as defined by
the JPEG specification.

Source

Adopt the requested values for use with all future JPEG-compressed transfers. If a value does
not exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the
nearest value and return TWRC_FAILURE/TWCC_BADVALUE.

Return Codes
TWRC_SUCCESS
TWRC_CHECKSTATUS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support JPEG */
/* data compression */

TWCC_BADVALUE /* illegal value specified */
TWCC_SEQERROR /* Operation invoked in invalid */

/* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Capabilities - ICAP_COMPRESSION and ICAP_JPEGQUALITY

Chapter 7

7-258 TWAIN 1.9a Specification

DG_IMAGE / DAT_PALETTE8 / MSG_GET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_GET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 through 6

Description

This operation causes the Source to report its current palette information. The application
should assure that the Source can provide palette information by invoking a MSG_GET
operation on ICAP_PIXELTYPE and checking for TWPT_PALETTE. If this pixel type has not
been established as the type to be used for future acquisitions, the Source should respond with
its default palette.

To assure that the palette information is wholly accurate, the application should invoke this
operation immediately after completion of the image transfer. The Source may perform palette
optimization during acquisition of the data and the palette it reports before the transfer will
differ from the one available afterwards.

(In general, the DAT_PALETTE8 operations are specialized to deal with 8-bit data, whether
grayscale or color (8-bit or 24-bit). Most current devices provide data with this bit depth.
These operations allow the application to inquire a Source’s support for palette color data and
set up a palette color transfer. See Chapter 8 for the definitions and data structures used to
describe palette color data within TWAIN.)

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the current palette. If no palette has been specified or calculated, use the
Source’s default palette (which may coincidentally be the current or default system palette).

 Operation Triplets

TWAIN 1.9a Specification 7-259

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE

Chapter 7

7-260 TWAIN 1.9a Specification

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_GETDEFAULT, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 through 6

Description

This operation causes the Source to report its power-on default palette.

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the default palette.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE

 Operation Triplets

TWAIN 1.9a Specification 7-261

DG_IMAGE / DAT_PALETTE8 / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_RESET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 only

Description

This operation causes the Source to dispose of any current palette it has and to use its default
palette for the next palette transfer. A Source that always performs palette optimization may
not use the default palette for the next transfer, but should dispose of its current palette and
adopt the default palette for the moment, anyway. The application can check the actual palette
information by invoking a MSG_GET operation immediately following the image transfer.

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the default palette and use the default palette for the next palette transfer.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE

Chapter 7

7-262 TWAIN 1.9a Specification

DG_IMAGE / DAT_PALETTE8 / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_SET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 only

Description

This operation requests that the Source adopt the specified palette for use with all subsequent
palette transfers. The application should be careful to supply a palette that matches the bit
depth of the Source. The Source is not required to adopt this palette. The application should be
careful to check the return value from this operation.

Application

Fill pPalette with the desired palette. If writing grayscale information, write the same data into
the Channel1, Channel2, and Channel3 fields of the Colors array. If NumColors != 256, fill the
unused array elements with minimum (“black”) values.

Source

The Source should not return TWRC_SUCCESS unless it will actually use the requested palette.
The Source should not modify the palette in any way until the transfer is complete. The palette
should be used for all remaining palette transfers for the duration of the session.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support */
/* palette color transfers */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET

Capability - ICAP_PIXELTYPE

 Operation Triplets

TWAIN 1.9a Specification 7-263

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_RGBRESPONSE, MSG_RESET, pResponse);

pResponse = A pointer to a TW_RGBRESPONSE structure.

Valid States

4 only

Description

Causes the Source to use its “identity” response curves for future RGB transfers. The identity
curve causes no change in the values of the captured data when it is applied. (Note that
resetting the curves for RGB data does not reset any MSG_SET curves for other pixel types).

Note: The DAT_RGBRESPONSE operations allow the application to specify the transfer
curves that the Source should apply to the RGB data it acquires. The Source should
not support these operations unless it can provide data of pixel type TWPT_RGB. The
Source need not maintain actual “identity response curves” for use with the
MSG_RESET operation—once reset, the Source should transfer the RGB data as
acquired from the Source. The application should be sure that the Source supports
these operations before invoking them. The operations should only be invoked when
the active pixel type is RGB (TWPT_RGB). See Chapter 8 for information about the
definitions and data structures used to describe the RGB response curve within
TWAIN.

Application

No special action.

Source

Apply the identity response curve to all future RGB transfers. This means that the Source will
transfer the RGB data exactly as acquired from the device.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support RGB */
/* response curves */

TWCC_BADVALUE /* Current pixel type is not */
/* TWPT_RGB */

TWCC_SEQERROR /* Operation invoked in invalid */
/* state */

See Also

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET
Capability - ICAP_PIXELTYPE

Chapter 7

7-264 TWAIN 1.9a Specification

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Call
DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_RGBRESPONSE, MSG_SET, pResponse);

pResponse = A pointer to a TW_RGBRESPONSE structure.

Valid States

4 only

Description

Causes the Source to transform any RGB data according to the response curves specified by the
application.

Application

Fill all three elements of the response curve with the response curve data you want the Source
to apply to future RGB transfers. The application should consider writing the same values into
each element of the same index to minimize color shift problems.

The Source may not support this operation. The application should ensure that the current
pixel type is TWPT_RGB and examine the return code from this operation.

Source

Apply the specified response curves to all future RGB transfers.

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADPROTOCOL /* Source does not support color */
/* response curves */

TWCC_BADVALUE /* Current pixel type is not RGB */
TWCC_SEQERROR /* Operation invoked in invalid */

/* state */

See Also

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

Capability - ICAP_PIXELTYPE

TWAIN 1.9a Specification 8-265

8
Data Types and Data Structures

Chapter Contents
Naming Conventions 265
Platform Dependent Definitions and Typedefs 268
Definitions of Common Types 269
Data Structure Definitions 270
Extended Image Information Definitions 320
Data Argument Types that Don’t Have Associated TW_ Structures 333
Constants 334

TWAIN defines a large number of data types and structures. These are all defined in the
TWAIN.H file that is shipped as part of this toolkit. The file is written in C so you will need to
modify the syntax if you develop your application or Source in some other language.

Naming Conventions
Data Structures, Variables, Pointers and Handles

Data structures referenced by pData parameter in DSM_Entry calls
Are prefixed by TW_ and followed by a descriptive name, in upper case. The name
typically matches the call’s DAT parameter.

Example: TW_USERINTERFACE

Fields in data structures (not containing pointers or handles)
Typically, begin with a capital letter followed by mixed upper and lower case letters.

Example: The MinBufSize, MaxBufSize, and Preferred fields in which are in the
TW_SETUPMEMXFER structure.

Fields in data structures that contain pointers or handles
Name starts with lower case “p” or “h” for pointer or handle followed by a typical field
name with initial capital then mixed case characters.

Example: pData, hContainer

Chapter 8

8-266 TWAIN 1.9a Specification

Constants and Types
General-use constants
Are prefixed by TWON_ followed by the description of the constant’s meaning.

Example: TWON_ICONID, TWON_ARRAY

Specific-use constants
Are prefixed with TWxx_ where xx are two letters identifying the group to which the
constant belongs.

Example: TWTY_INT16, TWTY_STR32 are constants of the group “TW Types”

Common data types
Rather than use the int, char, long, etc. types with their variations between compilers,
TWAIN defines a group of types that are used to cast each data item used by the protocol.
Types are prefixed and named exactly the same as TWAIN data structures, TW_ followed
by a descriptive name, all in upper case characters.

Example: TW_UINT32, TW_HANDLE

 Data Types and Data Structures

TWAIN 1.9a Specification 8-267

Custom Constants

Applications and Sources may define their own private (custom) constant identifiers for any
existing constant group by assigning the constant a value greater than or equal to 256. They
may also define any new desired custom constant group. The consuming entity should check
the originating entity’s TW_IDENTITY.ProductName when encountering a constant value
greater than or equal to 256 to see whether it can be recognized as a custom constant. Sources
and applications should not assume that all entities will have such error checking built in,
however.

The following are operation identifiers:

Data Groups Prefixed with DG_
Data Argument Types Prefixed with DAT_
Messages Prefixed with MSG_
Return codes Prefixed with TWRC_
Condition codes Prefixed with TWCC_
General capabilities Prefixed with CAP_
Image-specific capabilities Prefixed with ICAP_
Audio-specific capabilities Prefixed with ACAP_

As a general note, whenever the application or the Source allocates a TWAIN data structure, it
should fill all the fields it is instructed to fill and write the default value (if one is specified) into
any field it is not filling. If no default is specified, fill the field with the appropriate
TWON_DONTCARExx constant where xx describes the size of the field in bits (bytes, in the
case of strings). The TWON_ constants are described at the end of this chapter and defined in
the TWAIN.H file.

Some fields return a value of -1 when the data to be returned is ambiguous or unknown.
Applications and Sources must look for these special cases, especially when allocating memory.
Examples of Fields with -1 values are found in TW_PENDINGXFERS (Count),
TW_SETUPMEMXFER (MaxBufSize) and TW_IMAGEINFO (ImageWidth and ImageLength).

The remainder of this chapter lists the defined data types and data structures. Most of the
constants are also listed. However, refer to the TWAIN.H file for more explanation about each
constant and to see the lengthy list of country constants which are not duplicated here.

Chapter 8

8-268 TWAIN 1.9a Specification

Platform Dependent Definitions and Typedefs
On Windows

typedef HANDLE TW_HANDLE;
typedef LPVOID TW_MEMREF;

On Macintosh

#define PASCAL pascal
#define FAR
typedef Handle TW_HANDLE;
typedef char *TW_MEMREF;

 Data Types and Data Structures

TWAIN 1.9a Specification 8-269

Definitions of Common Types
String types

typedef unsigned char TW_STR32[34], FAR *pTW_STR32;
typedef unsigned char TW_STR64[66], FAR *pTW_STR64;
typedef unsigned char TW_STR128[130], FAR *pTW_STR128;
typedef unsigned char TW_STR255[256], FAR *pTW_STR255;
typedef unsigned char TW_STR1024[1026], FAR *pTW_STR1026;
typedef wchar_t TW_UNI512[512], FAR *pTW_UNI512;

On Windows: These include room for the strings and a NULL character.

On Macintosh: These include room for a length byte followed by the string.

Note: The TW_STR255 must hold less than 256 characters so the length fits in the first byte
on Macintosh.

Numeric types

typedef char TW_INT8 FAR *pTW_INT8;
typedef short TW_INT16 FAR *pTW_INT16;
typedef long TW_INT32 FAR *pTW_INT32;
typedef unsigned char TW_UINT8 FAR *pTW_UINT8;
typedef unsigned short TW_UINT16 FAR *pTW_UINT16;
typedef unsigned long TW_UINT32 FAR *pTW_UINT32;
typedef unsigned short TW_BOOL FAR *pTW_BOOL;

Fixed point structure type

typedef struct {
 TW_INT16 Whole;
 TW_UINT16 Frac;
} TW_FIX32, FAR *pTW_FIX32;

Note: In cases where the data type is smaller than TW_UINT32, the data should reside in the
lower word.

Chapter 8

8-270 TWAIN 1.9a Specification

Data Structure Definitions
This section provides descriptions of the data structure definitions.

TW_ARRAY
typedef struct {

TW_UINT16 ItemType;
TW_UINT32 NumItems;
TW_UINT8 ItemList[1];

} TW_ARRAY, FAR * pTW_ARRAY;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ARRAY)

Description

This structure stores a group of associated individual values which, when taken as a whole,
describes a single “value” for a capability. The values need have no relationship to one another
aside from being used to describe the same “value” of the capability. Such an array of values is
useful to describe the CAP_SUPPORTEDCAPS list. This structure is used as a member of
TW_CAPABILITY structures. Since this structure does not, therefore, exist “stand-alone” it is
identified by a TWON_xxxx constant rather than a DAT_xxxx. This structure is related in
function and purpose to TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE.

Field Descriptions

ItemType The type of items in the array. The type is indicated by the constant held in this
field. The constant is of the kind TWTY_xxxx. All items in the array have the
same size.

NumItems How many items are in the array.

ItemList[1] This is the array. One value resides within each element of the array. Space for
the array is not allocated inside this structure. The ItemList value is simply a
placeholder for the start of the actual array, which must be allocated when the
container is allocated . Remember to typecast the allocated array, as well as
references to the elements of the array, to the type indicated by the constant in
ItemType.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-271

TW_AUDIOINFO
typedef struct {

TW_STR255 Name;
TW_UINT32 Reserved;

} TW_AUDIOINFO, FAR * pTW_AUDIOINFO;

Used by

The DG_AUDIO / DAT_AUDIOINFO / MSG_GET operation

Description

Field Descriptions

Name Name of audio data

Reserved Reserved space

Chapter 8

8-272 TWAIN 1.9a Specification

TW_CAPABILITY
typedef struct {

TW_UINT16 Cap;
TW_UINT16 ConType;
TW_HANDLE hContainer;

} TW_CAPABILITY, FAR * pTW_CAPABILITY;

Used by

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Description

Used by an application either to get information about, or control the setting of a capability.
The first field identifies the capability being negotiated (e.g., ICAP_BRIGHTNESS). The second
specifies the format of the container (e.g., TWON_ONEVALUE). The third is a handle
(HGLOBAL under Microsoft Windows) to the container itself.

The application always sets the Cap field. On MSG_SET, the application also sets the ConType
and hContainer fields. On MSG_RESET, MSG_GET, MSG_GETCURRENT, and
MSG_GETDEFAULT, the source fills in the ConType and hContainer fields.

It is always the application’s responsibility to free the container when it is no longer needed.
On a MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT, the source allocates the
container but ownership passes to the application. On a MSG_SET, the application provides
the container either by allocating it or by re-using a container created earlier.

On a MSG_SET, the Source must not modify the container and it must copy any data that it
wishes to retain.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-273

Field Descriptions

Cap The numeric designator of the capability (of the form CAP_xxxx, ICAP_xxxx, or
ACAP_xxxx). e.g. ICAP_BRIGHTNESS. A list of these can be found in Chapter
9 and in the TWAIN.H file.

ConType The type of the container referenced by hContainer. The container structure
will be one of four types: TWON_ARRAY, TWON_ENUMERATION,
TWON_ONEVALUE, or TWON_RANGE. One of these values, which types the
container, should be entered into this field by whichever TWAIN entity fills in
the container. When the application wants to set (MSG_SET) the Source’s
capability, the application must fill in this field. When the application wants to
get (MSG_GET) capability information from the Source, the Source must fill in
this field.

hContainer References the container structure where detailed information about the
capability is stored. When the application wants to set (MSG_SET) the Source’s
capability, the application must provide the hContainer. When the application
wants to get (MSG_GET) the Source’s capability information, the Source must
allocate the space for the container. In either case, the application must release
this space.

Chapter 8

8-274 TWAIN 1.9a Specification

TW_CIECOLOR
typedef struct {

TW_UINT16 ColorSpace
TW_INT16 LowEndian;
TW_INT16 DeviceDependent;
TW_INT32 VersionNumber;
TW_TRANSFORMSTAGE StageABC;
TW_TRANSFORMSTAGE StageLMN;
TW_CIEPOINT WhitePoint;
TW_CIEPOINT BlackPoint;
TW_CIEPOINT WhitePaper;
TW_CIEPOINT BlackInk;
TW_FIX32 Samples[1];

} TW_CIECOLOR, FAR * pTW_CIECOLOR;

Used by

DG_IMAGE / DAT_CIECOLOR / MSG_GET

Description

Defines the mapping from an RGB color space device into CIE 1931 (XYZ) color space. For
more in-depth information, please reference the PostScript Language Reference Manual,
Second Edition, pp. 173-193. Note that the field names do not follow the conventions used
elsewhere within TWAIN. This breach allows the identifiers shown here to exactly match those
described in Appendix A, which was not written specifically for this Toolkit. Please also note
that ColorSpace has been redefined from its form in Appendix A to use TWPT_xxxx constants
defined in the TWAIN.H file.

This structure closely parallels the TCIEBasedColorSpace structure definition in Appendix A.
Note that the field names are slightly different and that two new fields have been added
(WhitePaper and BlackInk) to describe the reflective characteristics of the page from which the
image was acquired.

If the Source can provide TWPT_CIEXYZ, it must support all operations on this structure.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-275

Field Descriptions

ColorSpace Defines the original color space that was transformed into CIE XYZ. Use
a constant of type TWPT_xxxx. This value is not set-able by the
application. Application should write TWON_DONTCARE16 into this
on a MSG_SET.

LowEndian Used to indicate which data byte is taken first. If zero, then high byte is
first. If non-zero, then low byte is first.

DeviceDependent If non-zero then color data is device-dependent and only ColorSpace is
valid in this structure.

VersionNumber Version of the color space descriptor specification used to define the
transform data. The current version is zero.

StageABC Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

StageLMN Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

WhitePoint Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused white point.

BlackPoint Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused black point.

WhitePaper Values that specify the CIE 1931 (XYZ space) tri-stimulus value of ink-
less “paper” from which the image was acquired.

BlackInk Values that specify the CIE 1931 (XYZ space) tri-stimulus value of solid
black ink on the “paper” from which the image was acquired.

Samples[1] Optional table look-up values used by the decode function. Samples are
ordered sequentially and end-to-end as A, B, C, L, M, and N.

Chapter 8

8-276 TWAIN 1.9a Specification

TW_CIEPOINT
typedef struct {

TW_FIX32 X;
TW_FIX32 Y;
TW_FIX32 Z;

} TW_CIEPOINT, FAR * pTW_CIEPOINT;

Used by

Embedded in the TW_CIECOLOR structure

Description

Defines a CIE XYZ space tri-stimulus value. This structure parallels the TCIEPoint structure
definition in Appendix A.

Field Descriptions

X First tri-stimulus value of the CIE space representation.

Y Second tri-stimulus value of the CIE space representation.

Z Third tri-stimulus value of the CIE space representation.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-277

TW_CUSTOMDSDATA
typedef struct {

TW_UINT32 InfoLength; /* Length (in bytes) of data */
TW_UINT8 InfoData[1]; /* Array (Length) bytes long */

} TW_CUSTOMDSDATA, FAR *pTW_CUSTOMDSDATA;

Used by

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

Description

Allows for a data source and application to pass custom data to each other.

The format of the data contained in InfoData will be data source specific and will not be
defined by the TWAIN API. This structure will be used by an application to query the data
source for it’s current settings, and to archive them to disk. Although the format for this
custom data is not defined by TWAIN, source implementers are encouraged to use a ASCII
representation for the custom data to be used for settings archival. A Windows INI style
format would be easy to implement and allow for additional features to be added without
breaking backwards compatibility.

It is also recommended that source vendors embed basic source revision and vendor ID
information in the InfoData body so they can determine if the structure being based to the data
source is correct.

Field Descriptions

InfoLength Length, in bytes, of data

InfoData[1] Array (length) bytes long

Chapter 8

8-278 TWAIN 1.9a Specification

TW_DECODEFUNCTION
typedef struct {

TW_FIX32 StartIn;
TW_FIX32 BreakIn;
TW_FIX32 EndIn;
TW_FIX32 StartOut;
TW_FIX32 BreakOut;
TW_FIX32 EndOut;
TW_FIX32 Gamma;
TW_FIX32 SampleCount;

} TW_DECODEFUNCTION, FAR * pTW_DECODEFUNCTION;

Used by

Embedded in the TW_TRANSFORMSTAGE structure that is embedded in the TW_CIECOLOR
structure

Description

Defines the parameters used for channel-specific transformation. The transform can be
described either as an extended form of the gamma function or as a table look-up with linear
interpolation. This structure parallels the TDecodeFunction structure definition in Appendix A.

Field Descriptions

StartIn Starting input value of the extended gamma function. Defines the minimum
input value of channel data.

BreakIn Ending input value of the extended gamma function. Defines the maximum
input value of channel data.

EndIn The input value at which the transform switches from linear
transformation/interpolation to gamma transformation.

StartOut Starting output value of the extended gamma function. Defines the
minimum output value of channel data.

BreakOut Ending output value of the extended gamma function. Defines the
maximum output value of channel data.

EndOut The output value at which the transform switches from linear
transformation/interpolation to gamma transformation.

Gamma Constant value. The exponential used in the gamma function.

SampleCount The number of samples in the look-up table. Includes the values of StartIn
and EndIn. Zero-based index (actually, number of samples - 1). If zero, use
extended gamma, otherwise use table look-up.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-279

Chapter 8

8-280 TWAIN 1.9a Specification

TW_DEVICEEVENT
typedef struct {

TW_UINT32 Event;
TW_STR255 DeviceName;
TW_UINT32 BatteryMinutes; // Battery Minutes Remaining
TW_INT16 BatteryPercentage; // Battery Percentage Remaining
TW_INT32 PowerSupply; // Power Supply
TW_FIX32 XResolution; // Resolution
TW_FIX32 YResolution; // Resolution
TW_UINT32 FlashUsed2; // Flash Used2
TW_UINT32 AutomaticCapture; // Automatic Capture
TW_UINT32 TimeBeforeFirstCapture; // Automatic Capture
TW_UINT32 TimeBetweenCaptures; // Automatic Capture

} TW_DEVICEEVENT, FAR * pTW_DEVICEEVENT;

Used by

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Description

Provides information about the Event that was raised by the Source. The Source should only
fill in those fields applicable to the Event. The Application must only read those fields
applicable to the Event.

Field Descriptions

Event One of the TWDE_xxxx values. Defines the event that has
taken place.

DeviceName The name of the device that generated the event.

Valid for TWDE_BATTERYCHECK only

 BatteryMinutes Minutes of battery power remaining.

 BatteryPercentage Percentage of battery power remaining.

Valid for TWDE_POWERSUPPLY only

 PowerSupply Current power supply in use.

Valid for TWDE_RESOLUTION only

 XResolution Current X Resolution.

 YResolution Current Y Resolution.

Valid for TWDE_FLASHUSED2 only

 FlashUsed2 Current flash setting.

Valid for TWDE_AUTOMATICCAPTURE only

 AutomaticCapture Number of images camera will capture.

 TimeBeforeFirstCapture Number of seconds before first capture.

 TimeBetweenCaptures Hundredths of a second between captures.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-281

TW_ELEMENT8
typedef struct {

TW_UINT8 Index;
TW_UINT8 Channel1;
TW_UINT8 Channel2;
TW_UINT8 Channel3;

} TW_ELEMENT8, FAR * pTW_ELEMENT8;

Used by

Embedded in the TW_GRAYRESPONSE, TW_PALETTE8 and TW_RGBRESPONSE structures

Description

This structure holds the tri-stimulus color palette information for TW_PALETTE8 structures.
The order of the channels shall match their alphabetic representation. That is, for RGB data, R
shall be channel 1. For CMY data, C shall be channel 1. This allows the application and Source
to maintain consistency. Grayscale data will have the same values entered in all three channels.

Field Descriptions

Index Value used to index into the color table. Especially useful on the Macintosh.

Channel1 First tri-stimulus value (e.g. Red).

Channel2 Second tri-stimulus value (e.g. Green).

Channel3 Third tri-stimulus value (e.g. Blue).

Chapter 8

8-282 TWAIN 1.9a Specification

TW_ENUMERATION
typedef struct {

TW_UINT16 ItemType;
TW_UINT32 NumItems;
TW_UINT32 CurrentIndex;
TW_UINT32 DefaultIndex;
TW_UINT8 ItemList[1];

} TW_ENUMERATION, FAR * pTW_ENUMERATION;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ENUMERATION)

Description

Stores a group of individual values describing a capability. The values are ordered from lowest
to highest values, but the step size between each value is probably not uniform. Such a list
would be useful to describe the discreet resolutions of a capture device supporting, say, 75, 150,
300, 400, and 800 dots per inch.

This structure is related in function and purpose to TW_ARRAY, TW_ONEVALUE, and
TW_RANGE.

Field Descriptions

ItemType The type of items in the enumerated list. The type is indicated by the constant
held in this field. The constant is of the kind TWTY_xxxx. All items in the
array have the same size.

NumItems How many items are in the enumeration.

CurrentIndex The item number, or index (zero-based) into ItemList[], of the “current” value
for the capability.

DefaultIndex The item number, or index (zero-based) into ItemList[], of the “power-on”
value for the capability.

ItemList[1] The enumerated list: one value resides within each array element. Space for
the list is not allocated inside this structure. The ItemList value is simply a
placeholder for the start of the actual array, which must be allocated when
the container is allocated. Remember to typecast the allocation to ItemType,
as well as references to the elements of the array.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-283

TW_EVENT
typedef struct {

TW_MEMREF pEvent;
TW_UINT16 TWMessage;

TW_EVENT, FAR * pTW_EVENT;

Used by

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Description

Used to pass application events/messages from the application to the Source. The Source is
responsible for examining the event/message, deciding if it belongs to the Source, and
returning an appropriate return code to indicate whether or not the Source owns the
event/message. This process is covered in more detail in the Event Loop section of Chapter 3.

Field Descriptions

pEvent A pointer to the event/message to be examined by the Source.

Under Microsoft Windows, pEvent is a pMSG (pointer to a Microsoft Windows
MSG struct). That is, the message the application received from GetMessage().

On the Macintosh, pEvent is a pointer to an EventRecord.

TWMessage Any message (MSG_xxxx) the Source needs to send to the application in
response to processing the event/message. The messages currently defined for
this purpose are MSG_NULL, MSG_XFERREADY and MSG_CLOSEDSREQ.

Chapter 8

8-284 TWAIN 1.9a Specification

TW_EXTIMAGEINFO
typedef struct {

TW_UINT32 NumInfos;
TW_INFO Info[1];

} TW_EXTIMAGEINFO, FAR * pTW_ EXTIMAGEINFO;

Used by

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Description

This structure is used to pass extended image information from the data source to application
at the end of State 7. The application creates this structure at the end of State 7, when it receives
XFERDONE. Application fills NumInfos for Number information it needs, and array of
extended information attributes in Infos[] array. Application, then, sends it down to the source
using the above operation triplet. The data source then examines each Info, and fills the rest of
data with information allocating memory when necessary.

The design of extended image information allows for two methods of passing multiple InfoID
types. For instance, assume it is possible for a Source to generate more than one barcode off an
image. An Application can request to acquire the data in one of two ways. The first way is as
follows:

Applications asks for:
TW_EXTIMAGEINFO

NumInfos == 4
TW_INFO[0]

InfoID == TWEI_BARCODECOUNT
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[1]
InfoID == TWEI_BARCODETYPE
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[2]
InfoID == TWEI_BARCODETEXTLENGTH
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[3]
InfoID == TWEI_BARCODETEXT
ItemType == 0
NumItems == 0
CondCode == 0
Item == 0

 Data Types and Data Structures

TWAIN 1.9a Specification 8-285

The Source returns…
TW_EXTIMAGEINFO

NumInfos == 4
TW_INFO[0]

InfoID == TWEI_BARCODECOUNT
ItemType == TW_UINT32
NumItems == 1
CondCode == TWCC_SUCCESS
Item == 2

TW_INFO[1]
InfoID == TWEI_BARCODETYPE
ItemType == TW_UINT32
NumItems == 2
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-0

TW_INFO[2]
InfoID == TWEI_BARCODETEXTLENGTH
ItemType == TW_UINT32
NumItems == 2
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-1

TW_INFO[3]
InfoID == TWEI_BARCODETEXT
ItemType == TW_HANDLE
NumItems == 2
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-2

((TW_UINT32*)TW_HANDLE-0)[0] TWBT_3OF9
((TW_UINT32*)TW_HANDLE-0)[1] TWBT_2OF5INTERLEAVED

((TW_UINT32*)TW_HANDLE-1)[0] 16
((TW_UINT32*)TW_HANDLE-1)[1] 32

((TW_UINT8*)TW_HANDLE-2)[0] Barcode Text 0
((TW_UINT8*)TW_HANDLE-2)[((TW_UINT32*)TW_HANDLE-1)[0]]

Barcode Text 1

Note that Item is a pointer to the first datum for this TW_INFO. The Item field must be a
TW_HANDLE to the data if the value if the following is true:

(SizeOfSpecifiedItem * NumItems) > sizeof(TW_HANDLE)

It is the responsibility of the Application to free both the TW_EXTIMAGEINFO structure
and any Item values that are TW_HANDLE, based on this calculation.

The reason for this design is so that the Source and Application can easily index through
the TW_INFO structures (ex: TW_EXTIMAGEINFO->Item[0])

Note that the above structure could also be requested by the Application as follows:
TW_EXTIMAGEINFO

NumInfos == 5
TW_INFO[0]

InfoID == TWEI_BARCODECOUNT
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

Chapter 8

8-286 TWAIN 1.9a Specification

TW_INFO[1]
InfoID == TWEI_BARCODETYPE
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[2]
InfoID == TWEI_BARCODETEXTLENGTH
ItemType == TW_UNINT32
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[3]
InfoID == TWEI_BARCODETEXT
ItemType == 0
NumItems == 0
CondCode == 0
Item == 0

TW_INFO[4]
InfoID == TWEI_BARCODETEXT
ItemType == 0
NumItems == 0
CondCode == 0
Item == 0

If the Source detects multiple occurrences of a tag, then it must distribute the data as best it can
across the applicable TW_INFO fields. NumItems must be equal to one, and if there are not
enough TW_INFOs supplied for the specified InfoID, then any remaining data is discarded by
the Source. In this instance the return structure is big enough, and would look like the
following…

TW_EXTIMAGEINFO
NumInfos == 5
TW_INFO[0]

InfoID == TWEI_BARCODECOUNT
ItemType == TW_UINT32
NumItems == 1
CondCode == TWCC_SUCCESS
Item == 2

TW_INFO[1]
InfoID == TWEI_BARCODETYPE
ItemType == TW_UINT32
NumItems == 2
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-0

TW_INFO[2]
InfoID == TWEI_BARCODETEXTLENGTH
ItemType == TW_UINT32
NumItems == 2
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-1

 Data Types and Data Structures

TWAIN 1.9a Specification 8-287

TW_INFO[3]
InfoID == TWEI_BARCODETEXT
ItemType == TW_HANDLE
NumItems == 1
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-2

TW_INFO[4]
InfoID == TWEI_BARCODETEXT
ItemType == TW_HANDLE
NumItems == 1
CondCode == TWCC_SUCCESS
Item == TW_HANDLE-3

((TW_UINT32*)TW_HANDLE-0)[0] TWBT_3OF9
((TW_UINT32*)TW_HANDLE-0)[1] TWBT_2OF5INTERLEAVED

((TW_UINT32*)TW_HANDLE-1)[0] 16
((TW_UINT32*)TW_HANDLE-1)[1] 32

((TW_UINT8*)TW_HANDLE-2)[0] Barcode Text 0

((TW_UINT8*)TW_HANDLE-3)[0] Barcode Text 1

Field Descriptions

NumInfos Number of information that application is requesting. This is filled by the
application. If positive, then the application is requesting specific extended
image information. The application should allocate memory and fill in the
attribute tag for image information.

Info[1] Array of information. See TW_INFO structure.

Chapter 8

8-288 TWAIN 1.9a Specification

TW_FILESYSTEM
typedef struct {

// DG_CONTROL / DAT_FILESYSTEM / MSG_xxxx fields…
TW_STR255 InputName;
TW_STR255 OutputName;
TW_MEMREF Context;
// DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
// DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE field…
int Recursive;
// DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO fields…
TW_INT32 FileType;
TW_UINT32 Size;
TW_STR32 CreateTimeDate;
TW_STR32 ModifiedTimeDate;
TW_UINT32 FreeSpace;
TW_INT32 NewImageSize;
TW_UINT32 NumberOfFiles;
TW_UINT32 NumberOfSnippets;
TW_UINT32 DeviceGroupMask;
char Reserved[508];

} TW_FILESYSTEM, FAR * pTW_FILESYSTEM;

Used by

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Description

Provides information about the currently selected device.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-289

Field Descriptions

InputName The name of the input or source file.

OutputName The result of an operation or the name of a destination file.

Context A pointer to Source specific data used to remember state information,
such as the current directory.

MSG_GETINFO / MSG_GETFILEFIRST / MSG_DELETE

 Recursive When set to TRUE recursively apply the operation. (ex: deletes all
subdirectories in the directory being deleted; or copies all sub-
directories in the directory being copied.

MSG_GETINFO / MSG_GETFILEFIRST / MSG_GETFILENEXT

 FileType One of the TWFS_xxxx values.

 Size TWFT_DIRECTORY - Total size of media in bytes.
TWFT_IMAGE - Size of image in bytes.
TWFT_xxxx - All other file types return a value of 0.

 CreateTimeDate The create date of the file, in the form “YYYY/MM/DD
HH:mm:SS:sss” where YYYY is the year, MM is the numerical month,
DD is the numerical day, HH is the hour, mm is the minute, SS is the
second, and sss is the millisecond.

 ModifyTimeDate Last date the file was modified. Same format as CreateTimeDate.

 FreeSpace The bytes of free space left on the current device.

 NewImageSize An estimate of the amount of space a new image would take up,
based on image layout, resolution and compression. Dividing this
value into the FreeSpace will yield the approximate number of images
that the Device has room for.

 NumberOfFiles TWFT_IMAGE - Return 0
TWFT_xxxx - Return number of TWFT_IMAGE files on the file

system including those in all sub-directories.

 NumberOfSnippets The number of audio snippets associated with a file of type
TWFY_IMAGE.

 DeviceGroupMask A set of bits, with each bit uniquely identifying a device of type
TWFY_CAMERA and any associated TWFY_CAMERATOP and/or
TWFY_CAMERABOTTOM devices. See the article on File Systems in
Appendix A of this specification for more information.

 Reserved Space reserved for future expansion of this structure.

Chapter 8

8-290 TWAIN 1.9a Specification

TW_FIX32
typedef struct {

TW_INT16 Whole;
TW_UINT16 Frac;

} TW_FIX32, FAR * pTW_FIX32;

Used by

Embedded in the TW_CIECOLOR, TW_CIEPOINT, TW_DECODEFUNCTION, TW_FRAME,
TW_IMAGEINFO, and TW_TRANSFORMSTAGE structures.

Used in TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE structures
when ItemType is TWTY_FIX32.

Description

Stores a Fixed point number in two parts, a whole and a fractional part. The Whole part carries
the sign for the number. The Fractional part is unsigned.

Field Descriptions

Whole The Whole part of the floating point number. This number is signed.

Frac The Fractional part of the floating point number. This number is unsigned.

The following functions convert TW_FIX32 to float and float to TW_FIX32:
/**
* FloatToFix32
* Convert a floating point value into a FIX32.
**/

TW_FIX32 FloatToFix32 (float floater)
{

TW_FIX32 Fix32_value;
TW_INT32 value = (TW_INT32) (floater * 65536.0 + 0.5);
Fix32_value.Whole = value >> 16;
Fix32_value.Frac = value & 0x0000ffffL;
return (Fix32_value);

}

/**
* Fix32ToFloat
* Convert a FIX32 value into a floating point value.
**/

float FIX32ToFloat (TW_FIX32 fix32)
{

float floater;

floater = (float) fix32.Whole + (float) fix32.Frac / 65536.0;

return floater;
}

 Data Types and Data Structures

TWAIN 1.9a Specification 8-291

TW_FRAME
typedef struct {

TW_FIX32 Left;
TW_FIX32 Top;
TW_FIX32 Right;
TW_FIX32 Bottom;

} TW_FRAME, FAR * pTW_FRAME;

Used by

Embedded in the TW_IMAGELAYOUT structure

Description

Defines a frame rectangle in ICAP_UNITS coordinates.

Field Descriptions

Left Value of the left-most edge of the rectangle (in ICAP_UNITS).

Top Value of the top-most edge of the rectangle (in ICAP_UNITS).

Right Value of the right-most edge of the rectangle (in ICAP_UNITS).

Bottom Value of the bottom-most edge of the rectangle (in ICAP_UNITS).

Chapter 8

8-292 TWAIN 1.9a Specification

TW_GRAYRESPONSE
typedef struct {

TW_ELEMENT8 Response[1];
} TW_GRAYRESPONSE, FAR * pTW_GRAYRESPONSE;

Used by

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET
DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Description

This structure is used by the application to specify a set of mapping values to be applied to
grayscale data. Use this structure for grayscale data whose bit depth is up to and including 8-
bits. This structure can only be used if TW_IMAGEINFO.PixelType is TWPT_GRAY. The
number of elements in the array is determined by TW_IMAGEINFO.BitsPerPixel—the number
of elements is 2 raised to the power of TW_IMAGEINFO.BitsPerPixel.

This structure is primarily intended for use by applications that bypass the Source’s built-in
user interface.

Field Descriptions

Response[1] Transfer curve descriptors. All three channels must contain the same value for
every entry.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-293

TW_HANDLE
On Windows:

typedef HANDLE TW_HANDLE;

On Macintosh:
typedef Handle TW_HANDLE;

Used by

Embedded in the TW_CAPABILITY and TW_USERINTERFACE structures

Description

The typedef of Handles are defined by the operating system. TWAIN defines TW_HANDLE to
be the handle type supported by the operating system.

Field Descriptions

See definitions above

Chapter 8

8-294 TWAIN 1.9a Specification

TW_IDENTITY
typedef struct {

TW_UINT32 Id;
TW_VERSION Version;
TW_UINT16 ProtocolMajor;
TW_UINT16 ProtocolMinor;
TW_UINT32 SupportedGroups;
TW_STR32 Manufacturer;
TW_STR32 ProductFamily;
TW_STR32 ProductName;

} TW_IDENTITY, FAR * pTW_IDENTITY;

Used by

A large number of the operations because it identifies the application and the Source

Description

Provides identification information about a TWAIN entity. Used to maintain consistent
communication between entities.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-295

Field Descriptions

Id A unique, internal identifier for the TWAIN entity. This field is only filled
by the Source Manager. Neither an application nor a Source should fill this
field. The Source uses the contents of this field to “identify” which
application is invoking the operation sent to the Source.

Version A TW_VERSION structure identifying the TWAIN entity.

ProtocolMajor Major number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMAJOR).

ProtocolMinor Minor number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMINOR).

SupportedGroups 1. The application will normally set this field to specify which Data
Group(s) it wants the Source Manager to sort Sources by when
presenting the Select Source dialog, or returning a list of available
Sources. The application sets this prior to invoking a
MSG_USERSELECT operation.

2. The application may also set this field to specify which Data Group(s)
it wants the Source to be able to acquire and transfer. The application
must do this prior to sending the Source its MSG_ENABLEDS
operation.

3. The Source must set this field to specify which Data Group(s) it can
acquire. It will do this in response to a MSG_OPENDS.

Manufacturer String identifying the manufacturer of the application or Source. e.g.
“Aldus”.

ProductFamily Tells an application that performs device-specific operations which
product family the Source supports. This is useful when a new Source has
been released and the application doesn’t know about the particular
Source but still wants to perform Custom operations with it. e.g.
“ScanMan”.

ProductName A string uniquely identifying the Source. This is the string that will be
displayed to the user at Source select-time. This string must uniquely
identify your Source for the user, and should identify the application
unambiguously for Sources that care. e.g. “ScanJet IIc”.

Chapter 8

8-296 TWAIN 1.9a Specification

TW_IMAGEINFO
typedef struct {

TW_FIX32 XResolution;
TW_FIX32 YResolution;
TW_INT32 ImageWidth;
TW_INT32 ImageLength;
TW_INT16 SamplesPerPixel;
TW_INT16 BitsPerSample[8];
TW_INT16 BitsPerPixel;
TW_BOOL Planar;
TW_INT16 PixelType;
TW_UINT16 Compression;

} TW_IMAGEINFO, FAR * pTW_IMAGEINFO;

Used by

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation

Description

Describes the “real” image data, that is, the complete image being transferred between the
Source and application. The Source may transfer the data in a different format--the information
may be transferred in “strips” or “tiles” in either compressed or uncompressed form. See the
TW_IMAGEMEMXFER structure for more information.

The term “sample” is referred to a number of times in this structure. It holds the same meaning
as in the TIFF specification. A sample is a contiguous body of image data that can be
categorized by the channel or “ink color” it was captured to describe. In an R-G-B (Red-Green-
Blue) image, such as on your TV or computer’s CRT, each color channel is composed of a
specific color. There are 3 samples in an R-G-B; Red, Green, and Blue. A C-Y-M-K image has 4
samples. A Grayscale or Black and White image has a single sample.

Note: The value -1 in ImageWidth and ImageLength are special cases. It is possible for a
Source to not know either its Width or Length. Applications need to consider this
when allocating memory or otherwise dealing with the size of the Image.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-297

Field Descriptions

XResolution The number of pixels per ICAP_UNITS in the horizontal direction. The
current unit is assumed to be “inches” unless it has been otherwise
negotiated between the application and Source.

YResolution The number of pixels per ICAP_UNITS in the vertical direction.

ImageWidth How wide, in pixels, the entire image to be transferred is. If the Source
doesn’t know, set this field to -1 (hand scanners may do this).

--1 can only be used if the application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

ImageLength How tall/long, in pixels, the image to be transferred is. If the Source
doesn’t know, set this field to -1 (hand scanners may do this).

-1 can only be used if the application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

SamplesPerPixel The number of samples being returned. For R-G-B, this field would be
set to 3. For C-M-Y-K, 4. For Grayscale or Black and White, 1.

BitsPerSample[8] For each sample, the number of bits of information. 24-bit R-G-B will
typically have 8 bits of information in each sample (8+8+8). Some 8-bit
color is sampled at 3 bits Red, 3 bits Green, and 2 bits Blue. Such a
scheme would put 3, 3, and 2 into the first 3 elements of this array. The
supplied array allows up to 8 samples. Samples are not limited to 8 bits.
However, both the application and Source must simultaneously support
sample sizes greater than 8 bits per color.

BitsPerPixel The number of bits in each image pixel (or bit depth). This value is
invariant across the image. 24-bit R-G-B has BitsPerPixel = 24. 40-bit C-
M-Y-K has BitsPerPixel=40. 8-bit Grayscale has BitsPerPixel = 8. Black
and White has BitsPerPixel = 1.

Planar If SamplesPerPixel > 1, indicates whether the samples follow one another
on a pixel-by-pixel basis (R-G-B-R-G-B-R-G-B...) as is common with a
one-pass scanner or all the pixels for each sample are grouped together
(complete group of R, complete group of G, complete group of B) as is
common with a three-pass scanner. If the pixel-by-pixel method (also
known as “chunky”) is used, the Source should set Planar = FALSE. If
the grouped method (also called “planar”) is used, the Source should set
Planar = TRUE.

PixelType This is the highest categorization for how the data being transferred
should be interpreted by the application. This is how the application can
tell if the data is Black and White, Grayscale, or Color. Currently, the
only color type defined is “tri-stimulus”, or color described by three
characteristics. Most popular color description methods use tri-stimulus
descriptors. For simplicity, the constant used to identify tri-stimulus
color is called TWPT_RBG, for R-G-B color. There is no default for this
value. Fill this field with the appropriate TWPT_xxxx constant.

Compression The compression method used to process the data being transferred.
Default is no compression. Fill this field with the appropriate
TWCP_xxxx constant.

Chapter 8

8-298 TWAIN 1.9a Specification

TW_IMAGELAYOUT
typedef struct {

TW_FRAME Frame;
TW_UINT32 DocumentNumber;
TW_UINT32 PageNumber;
TW_UINT32 FrameNumber;

} TW_IMAGELAYOUT, FAR * pTW_IMAGELAYOUT;

Used by

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Description

Involves information about the original size of the acquired image and its position on the
original “page” relative to the “page’s” upper-left corner. Default measurements are in inches
(units of measure can be changed by negotiating the ICAP_UNITS capability). This
information may be used by the application to relate the acquired (and perhaps processed
image) to the original. Further, the application can, using this structure, set the size of the
image it wants acquired.

Another attribute of this structure is the included frame, page, and document indexing
information. Most Sources and applications, at least at first, will likely set all these fields to
one. For Sources that can acquire more than one frame from a page in a single acquisition, the
FrameNumber field will be handy. Sources that can acquire more than one page from a
document feeder will use PageNumber and DocumentNumber. These fields will be especially
useful for forms-processing applications and other applications with similar document tracking
requirements.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-299

Field Descriptions

Frame Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS)
of the rectangle enclosing the original image on the original “page”. If
the application isn’t interested in setting the origin of the image, set
both Top and Left to zero. The Source will fill in the actual values
following the acquisition. See also TW_FRAME.

DocumentNumber The document number, assigned by the Source, that the acquired data
originated on. Useful for grouping pages together. Usually a physical
representation, this could just as well be a logical construct. Initial
value is 1. Increment when a new document is placed into the
document feeder (usually tell this has happened when the feeder
empties). Reset when no longer acquiring from the feeder.

PageNumber The page which the acquired data was captured from. Useful for
grouping Frames together that are in some way related, usually
Source. Usually a physical representation, this could just as well be a
logical construct. Initial value is 1. Increment for each page fed from a
page feeder. Reset when a new document is placed into the feeder.

FrameNumber Usually a chronological index of the acquired frame. These frames are
related to one another in some way; usually they were acquired from
the same page. The Source assigns these values. Initial value is 1.
Reset when a new page is acquired from.

Chapter 8

8-300 TWAIN 1.9a Specification

TW_IMAGEMEMXFER
typedef struct {

TW_UINT16 Compression;
TW_UINT32 BytesPerRow;
TW_UINT32 Columns;
TW_UINT32 Rows;
TW_UINT32 XOffset;
TW_UINT32 YOffset;
TW_UINT32 BytesWritten;
TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR * pTW_IMAGEMEMXFER;

Used by

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Description

Describes the form of the acquired data being passed from the Source to the application. When
used in combination with a TW_IMAGEINFO structure, the application can correctly interpret
the image.

This structure allows transfer of “chunks” from the acquired data. These portions may be
either “strips” or “tiles.” Strips are tiles whose width matches that of the full image. Strips are
always passed sequentially, from “top” to “bottom”. A tile’s position does not necessarily
follow that of the previously passed tile. Most Sources will transfer strips.

Note: The application should remember what corner was contained in the first tile of a
plane. When the opposite corner is delivered, the plane is complete. The dimensions
of the memory transfers may vary.

Data may be passed either compressed or uncompressed. All Sources must pass uncompressed
data. Sources are not required to support compressed data transfers. Compressed data
transfers, and how the values are entered into the fields of this structure, are described in
Chapter 4.

Following is a picture of some of the fields from a TW_IMAGEMEMXFER structure. The large
outline shows the entire image which was selected to be transferred. The smaller rectangle
shows the particular portion being described by this TW_IMAGEMEMXFER structure.

Note: Remember that for a “strip” transfer XOffset = 0, and
Columns = TW_IMAGEINFO.ImageWidth.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-301

Field Descriptions

Compression The compression method used to process the data being transferred. Write
the constant (TWCP_xxxx) that precisely describes the type of compression
used for the buffer. This may be different from the method reported in the
TW_IMAGEINFO structure (if the user selected a different method before the
actual transfer began, for instance). This is unlikely, but possible. The
application can optionally abort the acquisition if the value in this field differs
from the TW_IMAGEINFO value. Default is no compression (TWCP_NONE)
and most transfers will probably be uncompressed. See the list of constants in
the TWAIN.H file.

BytesPerRow The number of uncompressed bytes in each row of the piece of the image
being described in this buffer.

Columns The number of uncompressed columns (in pixels) in this buffer.

Rows The number or uncompressed rows (in pixels) in this buffer.

XOffset How far, in pixels, the left edge of the piece of the image being described by
this structure is inset from the “left” side of the original image. If the Source is
transferring in “strips”, this value will equal zero. If the Source is transferring
in “tiles”, this value will often be non-zero.

YOffset Same idea as XOffset, but the measure is in pixels from the “top” of the
original image to the upper edge of this piece.

BytesWritten The number of bytes written into the transfer buffer. This field must always
be filled in correctly, whether compressed or uncompressed data is being
transferred.

Memory A structure of type TW_MEMORY describing who must dispose of the buffer,
the actual size of the buffer, in bytes, and where the buffer is located in
memory.

Chapter 8

8-302 TWAIN 1.9a Specification

TW_INFO
typedef struct {

TW_UINT16 InfoID;
TW_UINT16 ItemType;
TW_UINT16 NumItems;
TW_UINT16 CondCode;
TW_UINT32 Item;

} TW_INFO, FAR * pTW_ INFO;

Used by

Within TW_EXTIMAGEINFO structure.

Description

This structure is used to pass specific information between the data source and the application.

Field Descriptions

InfoID Tag identifying an information. For TW_EXTIMAGEINFO, the information ID is
defined as IACAP_xxxx. (Please refer to Extended Image capabilities).

ItemType Item data type. It is one of TWTY_xxxx value.

NumItems Number of items for this field.

CondCode This is condition code of availability of data for extended image attribute
requested. Following is the list of possible condition codes:

TWRC_INFONOTSUPPORTED

TWRC_DATANOTAVAILABLE

Item Data Item. For anything that is <= 4 bytes, it is actual data. Otherwise it is a
handle to data location. If < 4 bytes, it is 4 byte aligned.

Following is the list of added return codes.

TWRC_INFONOTSUPPORTED Requested information is not supported.

TWRC_DATANOTAVAILABLE Requested information is supported, but some unknown
reason, information is not available.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-303

TW_JPEGCOMPRESSION
typedef struct {

TW_UINT16 ColorSpace;
TW_UINT32 SubSampling;
TW_UINT16 NumComponents;
TW_UINT16 RestartFrequency;
TW_UINT16 QuantMap[4]Manufacturer;
TW_MEMORY QuantTable[4];
TW_UINT16 HuffmanMap[4];
TW_MEMORY HuffmanDC[2];
TW_MEMORY HuffmanAC[2];

} TW_JPEGCOMPRESSION, FAR * pTW_JPEGCOMPRESSION;

Used by

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Description

Describes the information necessary to transfer a JPEG-compressed image during a buffered
transfer. Images compressed in this fashion will be compatible with the JPEG File Interchange
Format, version 1.1. For more information on JPEG and TWAIN, see Chapter 4. The TWAIN
JPEG implementation is based on the JPEG Draft International Standard, version 10918-1. The
sample tables found in Section K of the JPEG Draft International Standard, version 10918-1 are
used as the default tables for QuantTable, HuffmanDC, and HuffmanAC.

Chapter 8

8-304 TWAIN 1.9a Specification

Field Descriptions

ColorSpace One of the TWPT_xxxx values. Defines the color space in which the
compressed components are stored. Only spaces supported by the
Source for ICAP_JPEGPIXELTYPE are valid.

SubSampling Encodes the horizontal and vertical subsampling in the form
ABCDEFGH, where ABCD are the high-order four nibbles which
represent the horizontal subsampling and EFGH are the low-order four
nibbles which represent the vertical subsampling. Each nibble may have
a value of 0, 1, 2, 3, or 4. However, max(A,B,C,D) * max(E,F,G,H) must
be less than or equal to 10. Subsampling is irrelevant for single
component images. Therefore, the corresponding nibbles should be set
to 1. e.g. To indicate subsampling two Y for each U and V in a YUV
space image, where the same subsampling occurs in both horizontal and
vertical axes, this field would hold 0x21102110. For a grayscale image,
this field would hold 0x10001000. A CMYK image could hold
0x11111111.

NumComponents Number of color components in the image to be compressed.

RestartFrequency Number of MDUs (Minimum Data Units) between restart markers.
Default is 0, indicating that no restart markers are used. An MDU is
defined for interleaved data (i.e. R-G-B, Y-U-V, etc.) as a minimum
complete set of 8x8 component blocks.

QuantMap[4] Mapping of components to Quantization tables.

QuantTable[4] Quantization tables.

HuffmanMap[4] Mapping of components to Huffman tables. Null entries signify
selection of the default tables.

HuffmanDC[2] DC Huffman tables. Null entries signify selection of the default tables.

HuffmanAC[2] AC Huffman tables. Null entries signify selection of the default tables.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-305

TW_MEMORY
typedef struct {

TW_UINT32 Flags;
TW_UINT32 Length;
TW_MEMREF TheMem;

} TW_MEMORY, FAR * pTW_MEMORY;

Used by

Embedded in the TW_IMAGEMEMXFER and TW_JPEGCOMPRESSION structures

Description

Provides information for managing memory buffers. Memory for transfer buffers is allocated
by the application--the Source is asked to fill these buffers. This structure keeps straight which
entity is responsible for deallocation.

Field Descriptions

Flags Encodes which entity releases the buffer and how the buffer is referenced. The
ownership flags must be used:

• when transferring Buffered Memory data as tiles
• when transferring Buffered Memory that is compressed
• in the TW_JPEGCOMPRESSION structure

When transferring Buffered Memory data as uncompressed strips, the application
allocates the buffers and is responsible for setting the ownership flags.

This field is used to identify how the memory is to be referenced. The memory is
always referenced by a Handle on the Macintosh and a Pointer under UNIX. It is
referenced by a Handle or a pointer under Microsoft Windows.

Use TWMF_xxxx constants, bit-wise OR’d together to fill this field.

 Flag Constants:

 TWMF_APPOWNS 0x1
 TWMF_DSMOWNS 0x2
 TWMF_DSOWNS 0x4
 TWMF_POINTER 0x8
 TWMF_HANDLE 0x10

Length The size of the buffer in bytes. Should always be an even number and word-
aligned.

TheMem Reference to the buffer. May be a Pointer or a Handle (see Flags field to make this
determination). You must typecast this field before referencing it in your code.

Chapter 8

8-306 TWAIN 1.9a Specification

TW_MEMREF
On Windows:

typedef LPVOID TW_MEMREF;

On Macintosh:
typedef char *TW_MEMREF;

On Unix:
typedef unsigned charEMREF;

Used by

Embedded in the TW_EVENT and TW_MEMORY structures

Description

Memory references are specific to each operating system. TWAIN defines TW_MEMREF to be
the memory reference type supported by the operating system.

Field Descriptions

See definitions above

 Data Types and Data Structures

TWAIN 1.9a Specification 8-307

TW_ONEVALUE
typedef struct {

TW_UINT16 ItemType;
TW_UINT32 Item;

} TW_ONEVALUE, FAR * pTW_ONEVALUE;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ONEVALUE)

Description

Stores a single value (item) which describes a capability. This structure is currently used only
in a TW_CAPABILITY structure. Such a value would be useful to describe the current value of
the device’s contrast, or to set a specific contrast value. This structure is related in function and
purpose to TW_ARRAY, TW_ENUMERATION, and TW_RANGE.

Note that in cases where the data type is TW_UINT16, the data should reside in the lower
word.

Field Descriptions

ItemType The type of the item. The type is indicated by the constant held in this field. The
constant is of the kind TWTY_xxxx.

Item The value.

Chapter 8

8-308 TWAIN 1.9a Specification

TW_PALETTE8
typedef struct {

TW_UINT16 NumColors;
TW_UINT16 PaletteType;
TW_ELEMENT8 Colors[256];

} TW_PALETTE8, FAR * pTW_PALETTE8;

Used by

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Description

This structure holds the color palette information for buffered memory transfers of type
ICAP_PIXELTYPE = TWPT_PALETTE.

Field Descriptions

NumColors Number of colors in the color table; maximum index into the color table should
be one less than this (since color table indexes are zero-based).

PaletteType TWPA_xxxx constant specifying the type of palette.

Colors[256] Array of palette values.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-309

TW_PASSTHRU
typedef struct {

TW_MEMREF pCommand;
TW_UINT32 CommandBytes;
TW_INT32 Direction;
TW_MEMREF pData;
TW_UINT32 DataBytes;
TW_UINT32 DataBytesXfered;

} TW_PASSTHRU, FAR * pTW_PASSTHRU;

Used by

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Description

Used to bypass the TWAIN protocol when communicating with a device. All memory must be
allocated and freed by the Application. Use of this feature is limited to Source writers who
require a standard entry point for specialized Applications, such as diagnostics.

Field Descriptions

pCommand Pointer to Command buffer.

CommandBytes Number of bytes in Command buffer.

Direction One of the TWDR_xxxx values. Defines the direction of data flow.

pData Pointer to Data buffer.

DataBytes Number of bytes in Data buffer.

DataBytesXfered Number of bytes successfully transferred.

Chapter 8

8-310 TWAIN 1.9a Specification

TW_PENDINGXFERS
typedef struct {

TW_UINT16 Count;
union {

TW_UINT32 EOJ;
TW_UINT32 Reserved;

};
} TW_PENDINGXFERS, FAR *pTW_PENDINGXFERS;

Used by

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Description

This structure tells the application how many more complete transfers the Source currently has
available. The application should MSG_GET this structure at the conclusion of a transfer to
confirm the Source’s current state. If the Source has more transfers pending it will remain in
State 6 awaiting initiation of the next transfer by the application.

If it has no more image transfers pending, it will place zero into the Count and will have
automatically transitioned to State 5 (audio transfers will remain in State 6, even when the
Count goes to zero).

If the Source knows there are more transfers pending but is unsure of the actual number, it
should place -1 into Count (for example, with document feeders or continuous video sources).
Otherwise, the Source should place the actual number of pending transfers into Count.

Field Descriptions

Count When DAT_XFERGROUP is set to DG_IMAGE

The number of complete transfers a Source has available for the application it is
connected to. If no more transfers are available, set to zero. If an unknown and
non-zero number of transfers are available, set to -1.

When DAT_XFERGROUP is set to DG_AUDIO

The number of complete audio snippet transfers for a given image a Source has
available for the application it is connected to. If no more transfers are available, set
to zero. –1 is not a valid value.

EOJ The application should check this field if the CAP_JOBCONTROL is set to other
than TWJC_NULL. If the EOJ is not 0, the application should expect more data
from the driver according to CAP_JOBCONTROL settings.

Reserved Maintained so as not to cause compile time errors for pre-1.7 code.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-311

TW_RANGE
typedef struct {

TW_UINT16 ItemType;
TW_UINT32 MinValue;
TW_UINT32 MaxValue;
TW_UINT32 StepSize;
TW_UINT32 DefaultValue;
TW_UINT32 CurrentValue;

} TW_RANGE, FAR * pTW_RANGE;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_RANGE)

Description

Stores a range of individual values describing a capability. The values are uniformly
distributed between a minimum and a maximum value. The step size between each value is
constant. Such a value is useful when describing such capabilities as the resolutions of a device
which supports discreet, uniform steps between each value, such as 50 through 300 dots per
inch in steps of 2 dots per inch (50, 52, 54, ..., 296, 298, 300). This structure is related in function
and purpose to TW_ARRAY, TW_ENUMERATION, and TW_ONEVALUE.

Field Descriptions

ItemType The type of items in the list. The type is indicated by the constant
held in this field. The constant is of the kind TWTY_xxxx. All
items in the list have the same size/type.

MinValue The least positive/most negative value of the range.

MaxValue The most positive/least negative value of the range.

StepSize The delta between two adjacent values of the range.
e.g. Item2 - Item1 = StepSize;

DefaultValue The device’s “power-on” value for the capability. If the
application is performing a MSG_SET operation and isn’t sure
what the default value is, set this field to TWON_DONTCARE32.

CurrentValue The value to which the device (or its user interface) is currently
set to for the capability.

Chapter 8

8-312 TWAIN 1.9a Specification

TW_RGBRESPONSE
typedef struct {

ELEMENT8 Response[1];
} TW_RGBRESPONSE, FAR * pTW_RGBRESPONSE;

Used by

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET
DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Description

This structure is used by the application to specify a set of mapping values to be applied to
RGB color data. Use this structure for RGB data whose bit depth is up to, and including, 8-bits.
The number of elements in the array is determined by TW_IMAGEINFO.BitsPerPixel—the
number of elements is 2 raised to the power of TW_IMAGEINFO.BitsPerPixel.

This structure is primarily intended for use by applications that bypass the Source’s built-in
user interface.

Field Descriptions

Response[1] Transfer curve descriptors. To minimize color shift problems, writing the same
values into each channel is desirable.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-313

TW_SETUPFILEXFER
typedef struct {

TW_STR255 FileName;
TW_UINT16 Format;
TW_INT16 VRefNum;

} TW_SETUPFILEXFER, FAR * pTW_SETUPFILEXFER;

Used by

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Description

Describes the file format and file specification information for a transfer through a disk file.

Field Descriptions

FileName A complete file specifier to the target file. On Windows, be sure to include the
complete pathname.

Format The format of the file the Source is to fill. Fill with the correct constant—as
negotiated with the Source—of type TWFF_xxxx.

VRefNum The volume reference number for the file. This applies to Macintosh only. On
Windows, fill the field with TWON_DONTCARE16.

Chapter 8

8-314 TWAIN 1.9a Specification

TW_SETUPFILEXFER2
typedef struct {

TW_MEMREF FileName;
TW_UINT16 FileNameType;
TW_UINT16 Format;
TW_INT16 VRefNum;
TW_UINT32 parID;

} TW_SETUPFILEXFER2, FAR * pTW_SETUPFILEXFER2;

Used by

DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER2 / MSG_SET

Description

Describes the file format and file specification information for a transfer through a disk file.

Field Descriptions

FileName A complete, null terminated file specifier to the target file. On Windows, be
sure to include the complete pathname.

FileNameType The string type of the FileName. Can be either TWTY_STR1024 for ASCII or
multi-byte data, or can be TWTY_UNI512 for UNICODE data.

Format The format of the file the Source is to fill. Fill with the correct constant—as
negotiated with the Source—of type TWFF_xxxx.

VRefNum The volume reference number for the file. This applies to Macintosh only. On
Windows, fill the field with TWON_DONTCARE16.

parID The parent directory ID for the file. This applies to Macintosh only. On
Windows, fill the field with TWON_DONTCARE16.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-315

TW_SETUPMEMXFER
typedef struct {

TW_UINT32 MinBufSize;
TW_UINT32 MaxBufSize;
TW_UINT32 Preferred;

} TW_SETUPMEMXFER, FAR * pTW_SETUPMEMXFER;

Used by

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Description

Provides the application information about the Source’s requirements and preferences
regarding allocation of transfer buffer(s). The best applications will allocate buffers of the
Preferred size. An application should never allocate a buffer smaller than MinBufSize. Some
Sources may not be able to fill a buffer larger than MaxBufSize so a larger allocation is a waste
of RAM (digital cameras or frame grabbers fit this category).

Sources should fill out all three fields as accurately as possible. If a Source can fill an
indeterminately large buffer (hand scanners might do this), put a -1 in MaxBufSize.

Field Descriptions

MinBufSize The size of the smallest transfer buffer, in bytes, that a Source can be successful
with. This will typically be the number of bytes in an uncompressed row in the
block to be transferred. An application should never allocate a buffer smaller
than this.

MaxBufSize The size of the largest transfer buffer, in bytes, that a Source can fill. If a
Source can fill an arbitrarily large buffer, it might set this field to negative 1 to
indicate this (a hand-held scanner might do this, depending on how long its
cord is). Other Sources, such as frame grabbers, cannot fill a buffer larger than
a certain size. Allocation of a transfer buffer larger than this value is wasteful.

Preferred The size of the optimum transfer buffer, in bytes. A smart application will
allocate transfer buffers of this size, if possible. Buffers of this size will
optimize the Source’s performance. Sources should be careful to put
reasonable values in this field. Buffers that are 10’s of kbytes will be easier for
applications to allocate than buffers that are 100’s or 1000’s of kbytes.

Chapter 8

8-316 TWAIN 1.9a Specification

TW_STATUS
typedef struct {

TW_UINT16 ConditionCode;
TW_UINT16 Reserved;

} TW_STATUS, FAR * pTW_STATUS;

Used by

DG_CONTROL / DAT_STATUS / MSG_GET

Description

Used to describe the status of a Source. To ask the Source to fill in this structure, the
application sends:

DG_CONTROL / DAT_STATUS / MSG_GET

with a pointer to a TW_STATUS structure. This is typically done in response to a Return Code
other than TWRC_SUCCESS and should always be done in response to a Return Code of
TWRC_CHECKSTATUS. In such a case, the Source has something it needs the application to
know about.

Field Descriptions

ConditionCode The TWCC_xxxx code (Condition Code) being returned to the application.

Reserved Reserved for future use.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-317

TW_TRANSFORMSTAGE
typedef struct {

TW_DECODEFUNCTION Decode[3];
TW_FIX32 Mix[3][3];

} TW_TRANSFORMSTAGE, FAR * pTW_TRANSFORMSTAGE;

Used by

Embedded in the TW_CIECOLOR structure

Description

Specifies the parametrics used for either the ABC or LMN transform stages. This structure
parallels the TTransformStage structure definition in Appendix A.

Field Descriptions

Decode[3] Channel-specific transform parameters.

Mix[3][3] 3x3 matrix that specifies how channels are mixed in

Chapter 8

8-318 TWAIN 1.9a Specification

TW_USERINTERFACE
typedef struct {

TW_BOOL ShowUI;
TW_BOOL ModalUI;
TW_HANDLE hParent;

} TW_USERINTERFACE, FAR * pTW_USERINTERFACE;

Used by

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Description

This structure is used to handle the user interface coordination between an application and a
Source.

Field Descriptions

ShowUI Set to TRUE by the application if the Source should activate its built-in user
interface. Otherwise, set to FALSE. Note that not all sources support ShowUI =
FALSE. See the description of DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS for more information.

ModalUI If ShowUI is TRUE, then an application setting this to TRUE requests the Source
to run Modal (no user access to the application’s windows while the Source is
running).

hParent Microsoft Windows only: Application’s window handle. The Source designates
the hWnd as its parent when creating the Source dialog.

NOTE: Window handle allows Source’s user interface to be a proper child of the
parent application.

 Data Types and Data Structures

TWAIN 1.9a Specification 8-319

TW_VERSION
typedef struct {

TW_UINT16 MajorNum;
TW_UINT16 MinorNum;
TW_UINT16 Language;
TW_UINT16 Country;
TW_STR32 Info;

} TW_VERSION, FAR * pTW_VERSION;

Used by

This is embedded in the TW_IDENTITY data structure

Description

A general way to describe the version of software that is running.

Field Descriptions

MajorNum This refers to your application or Source’s major revision number. e.g. The “2”
in “version 2.01”.

MinorNum The incremental revision number of your application or Source. e.g. The “1” in
“version 2.1”.

Language The primary language for your Source or application. e.g. TWLG_GER.

Country The primary country where your Source or application is intended to be
distributed. e.g. Germany.

Info General information string - fill in as needed. e.g. “1.0b3 Beta release”.

Chapter 8

8-320 TWAIN 1.9a Specification

Extended Image Information Definitions
The following sections contain information about extended image attributes.

TWAIN 1.7 Extended Image Attribute Capabilities

The following extended image attribute capabilities have been defined. If a data source wishes
to create additional custom image attribute capabilities, it should define its TWEI_CUSTOMxxx
identifiers with a base starting ID of TWEI_CUSTOM+(x) where x is a unique positive number
defined by the data source.

For all extended image attributes see: DG_IMAGE/DAT_EXTIMAGEINFO/MSG_GET

Bar Code Recognition

TWEI_BARCODECOUNT

Description Returns the number of bar codes found on the document image. A value
of 0 means the bar code engine was enabled but that no bar codes were
found. A value of -1 means the bar code engine was not enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_BARCODECONFIDENCE

Description: This number reflects the degree of certainty the bar code engine has in the
accuracy of the information obtained from the scanned image and ranges
from 0 (no confidence) to 100 (supreme confidence). The Source may
return a value of -1 if it does not support confidence reporting.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_BARCODEROTATION

Description: The bar code’s orientation on the scanned image is described in reference
to a Western-style interpretation of the image.

Value Type: TW_UINT32
Allowed Values: TWBCOR_ROT0 Normal reading orientation

TWBCOR_ROT90 Rotated 90 degrees clockwise
TWBCOR_ROT180 Rotated 180 degrees clockwise
TWBCOR_ROT270 Rotated 270 degrees clockwise
TWBCOR_ROTX The orientation is not known.

TWEI_BARCODETEXTLENGTH

Description: The number of ASCII characters derived from the bar code.

Value Type: TW_UINT32
Allowed Values: >=0

 Data Types and Data Structures

TWAIN 1.9a Specification 8-321

TWEI_BARCODETEXT

Description: The text of a bar code found on a page.

Value Type: TW_HANDLE
Allowed Values: Any handle to a string

TWEI_BARCODEX

Description: The X coordinate of a bar code found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_BARCODEY

Description: The Y coordinate of a bar code found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _BARCODETYPE

Description: The type of bar code found on a page.

Value Type: TW_UINT32
Allowed Values: TWBT_3OF9 0

TWBT_2OF5INTERLEAVED 1
TWBT_2OF5NONINTERLEAVED 2
TWBT_CODE93 3
TWBT_CODE128 4
TWBT_UCC128 5
TWBT_CODABAR 6
TWBT_UPCA 7
TWBT_UPCE 8
TWBT_EAN8 9
TWBT_EAN13 10
TWBT_POSTNET 11
TWBT_PDF417 12
TWBT_2OF5INDUSTRIAL 13
TWBT_2OF5MATRIX 14
TWBT_2OF5DATALOGIC 15
TWBT_2OF5IATA 16
TWBT_3OF9FULLASCII 17
TWBT_CODABARWITHSTARTSTOP 18
TWBT_MAXICODE 19

Chapter 8

8-322 TWAIN 1.9a Specification

Shaded Area Detection and Removal

TWEI _DESHADECOUNT

Description: Returns the number of shaded regions found and erased in the document
image. A value of 0 means the deshade engine was enabled but that no
regions were processed. A value of -1 means the deshade engine was not
enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _DESHADETOP

Description: The top coordinate of a shaded region found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _DESHADELEFT

Description: The left coordinate of a shaded region found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _DESHADEHEIGHT

Description: The height of a shaded region found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _DESHADEWIDTH

Description: The width of a shaded region found on a page.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _DESHADESIZE

Description: The width of the dots within the shade region.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_DESHADEBLACKCOUNTOLD

Description: The total number of black pixels in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

 Data Types and Data Structures

TWAIN 1.9a Specification 8-323

TWEI_ DESHADEBLACKCOUNTNEW

Description: The total number of black pixels in the region after deshading. If this value
is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEBLACKRLMIN

Description: The shortest black pixel run-length in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEBLACKRLMAX

Description: The longest black pixel run-length in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEWHITECOUNTOLD

Description: The total number of white pixels in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEWHITECOUNTNEW

Description: The total number of white pixels in the region after deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEWHITERLMIN

Description: The shortest white pixel run-length in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_ DESHADEWHITERLAVE

Description: The average length of all white pixel run-lengths in the region prior to
deshading. If this value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

Chapter 8

8-324 TWAIN 1.9a Specification

TWEI_ DESHADEWHITERLMAX

Description: The longest white pixel run-length in the region prior to deshading. If this
value is unknown the Source returns -1.

Value Type: TW_UINT32
Allowed Values: >=0

Speckle Removal

TWEI _SPECKLESREMOVED

Description: The number of speckles removed from the image when de-speckle is
enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _BLACKSPECKLESREMOVED

Description: The number of black speckles removed from the image when despeckle is
enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _WHITESPECKLESREMOVED

Description: The number of white speckles removed (black speckles added) from the
image when despeckle is enabled.

Value Type: TW_UINT32
Allowed Values: >=0

Horizontal Line Detection and Removal

TWEI _HORZLINECOUNT

Description: Returns the number of horizontal lines found and erased in the document
image. A value of 0 means the line removal engine was enabled but that
no lines were found. A value of -1 means the line engine was not enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _HORZLINEXCOORD

Description: The x coordinate of a horizontal line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

 Data Types and Data Structures

TWAIN 1.9a Specification 8-325

TWEI _HORZLINEYCOORD

Description: The y coordinate of a horizontal line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _HORZLINELENGTH

Description: The length of a horizontal line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _HORZLINETHICKNESS

Description: The thickness (height) of a horizontal line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

Vertical Line Detection and Removal

TWEI _VERTLINECOUNT

Description: Returns the number of vertical lines found and erased in the document
image. A value of 0 means the line removal engine was enabled but that
no lines were found. A value of -1 means the line engine was not enabled.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _VERTLINEXCOORD

Description: The x coordinate of a vertical line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _VERTLINEYCOORD

Description: The y coordinate of a vertical line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI _VERTLINELENGTH

Description: The length of a vertical line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

Chapter 8

8-326 TWAIN 1.9a Specification

TWEI_VERTLINETHICKNESS

Description: The thickness (width) of a vertical line detected in the image.

Value Type: TW_UINT32
Allowed Values: >=0

Patch Code Detection (Job Separation)

TWEI_PATCHCODE

Description: The patch code detected.

Value Type: TW_UINT32
Allowed Values: TWPCH_PATCH1 1

TWPCH_PATCH2 2
TWPCH_PATCH3 3
TWPCH_PATCH4 4
TWPCH_PATCH6 5
TWPCH_PATCHT 6

Skew detection and Removal

TWEI_DESKEWSTATUS

Description: Returns the status of the deskew operation.

Value Type: TW_UINT32
Allowed Values: TWDSK_SUCCESS Image successfully deskewed

TWDSK_REPORTONLY Deskew information only
TWDSK_FAIL Deskew failed
TWDSK_DISABLED Deskew engine not enabled

TWEI_SKEWORIGINALANGLE

Description: The amount of skew in the original image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWFINALANGLE

Description: The amount of skew in the deskewed image. This number may not be zero.

Value Type: TW_UINT32
Allowed Values: >=0

 Data Types and Data Structures

TWAIN 1.9a Specification 8-327

TWEI_SKEWCONFIDENCE

Description: This number reflects the degree of certainty the deskew engine has in the
accuracy of the deskewing of the current image and ranges from 0 (no
confidence) to 100 (supreme confidence). The Source may return a value of
-1 if it does not support confidence reporting.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWX1

Description: This is the X image coordinate of the upper left corner of the virtual
deskewed image. It may be negative indicating the deskewed corner is not
represented by actual pixels.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWY1

Description: The Y image coordinate of the upper left corner of the virtual deskewed
image. It may be negative indicating the deskewed corner is not
represented by actual pixels.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWX2

Description: The X image coordinate of the upper right corner of the virtual deskewed
image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWY2

Description: The Y image coordinate of the upper right corner of the virtual deskewed
image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWX3

Description: This is the X image coordinate of the lower left corner of the virtual
deskewed image. It may be negative indicating the deskewed corner is not
represented by actual pixels.

Value Type: TW_UINT32
Allowed Values: >=0

Chapter 8

8-328 TWAIN 1.9a Specification

TWEI_SKEWWINDOWY3

Description: The Y image coordinate of the lower left corner of the virtual deskewed
image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWX4

Description: The X image coordinate of the lower right corner of the virtual deskewed
image.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_SKEWWINDOWY4

Description: The Y image coordinate of the lower right corner of the deskewed image.

Value Type: TW_UINT32
Allowed Values: >=0

Endorsed / Imprinted Text

TWEI_ENDORSEDTEXT

Description: The text that was endorsed on the paper by the scanner.

Value Type: TW_STR255
Allowed Values: Any string

Forms Recognition

TWEI_FORMCONFIDENCE

Description: The confidence that the specified form was detected. This is an array
property with a confidence factor for each form In the data set with 0
meaning no match and 100 meaning absolute certainty. Typically values
over 70 imply a good form match with the template.

Value Type: TW_UINT32
Allowed Values: 0 to 100

TWEI_FORMTEMPLATEMATCH

Description: The array of file names for the master forms matched against a form. If
multi-page master forms are used, the associated page numbers are
contained in the FORMTEMPLATEPAGEMATCH capability array.

Value Type: TW_STR255
Allowed Values: Any string

 Data Types and Data Structures

TWAIN 1.9a Specification 8-329

TWEI_FORMTEMPLATEPAGEMATCH

Description: An array containing the number of the page from a multi-page master
form matched against a form image. It is useful when matching a form
image against the pages of a multi-page master form. The file name of the
master form is contained in the FORMTEMPLATEMATCH capability.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_FORMHORZDOCOFFSET

Description: An array containing the perceived horizontal offsets of the form image
being matched against a set of master forms. This is useful for page
registration once the form has been recognized.

Value Type: TW_UINT32
Allowed Values: >=0

TWEI_FORMVERTDOCOFFSET

Description: An array containing the perceived vertical offsets of the form image being
matched against a set of master forms. This is useful for page registration
once the form has been recognized.

Value Type: TW_UINT32
Allowed Values: >= 0

TWAIN 1.9 Extended Image Attribute Capabilities

These next items, taken together, provide a way to unambiguously identify the physical source
of an image. Applications can use this information to associate scanned images from the same
side of a sheet of paper, the sheet of paper itself, or a set of sheets comprising a document.
While much of this information is available using DAT_IMAGELAYOUT, it is provided here
for performance reasons; to allow an Application to glean as much information about the image
as possible through a single call.

These items are mandatory, if a Source supports DAT_EXTIMAGEINFO, then these items must
be present in the data returned by the Source.

TWEI_BOOKNAME

Description This is new with TWAIN 1.9, expanding on the document/page/frame
numbers described by previous versions of TWAIN in the
TW_IMAGELAYOUT structure. The ordering is
book/chapter/document/page(camera)/frame, and increases the detail of
image addressing that a Source can provide for an Application. TWAIN 1.9
Sources that support extended image info must provide this information,
even if the value is always fixed at 1.

Value Type: TW_ STR255
Allowed Values: Any valid string data.
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

Chapter 8

8-330 TWAIN 1.9a Specification

TWEI_CHAPTERNUMBER

Description This is new with TWAIN 1.9, expanding on the document/page/frame
numbers described by previous versions of TWAIN in the
TW_IMAGELAYOUT structure. The ordering is
book/chapter/document/page(camera)/frame, and increases the detail of
image addressing that a Source can provide for an Application. TWAIN
1.9 Sources that support extended image info must provide this
information, even if the value is always fixed at 1.

Value Type: TW_ UINT32
Allowed Values: 1 to 232-1
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

TWEI_DOCUMENTNUMBER

Description This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. The ordering is
book/chapter/document/page(camera)/frame, and increases the amount
of image addressing that a Source can provide for an Application. TWAIN
1.9 Sources that support extended image info must provide this
information, even if the value is always fixed at 1.

Value Type: TW_ UINT32
Allowed Values: 1 to 232-1
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

TWEI_PAGENUMBER
Description This must be the same value returned by a call to DG_CONTROL /

DAT_IMAGELAYOUT / MSG_GET. The ordering is
book/chapter/document/page(camera)/frame, and increases the amount
of image addressing that a Source can provide for an Application. TWAIN
1.9 Sources that support extended image info must provide this information, even
if the value is always fixed at 1.

Value Type: TW_ UINT32
Allowed Values: 1 to 232-1
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

 Data Types and Data Structures

TWAIN 1.9a Specification 8-331

TWEI_CAMERA

Description The primary use of this value is to determine if the image is from the top or
the bottom side of a sheet of paper. This is accomplished by naming the
camera that was used to obtain the image. For Sources that support
DAT_FILESYSTEM, the Application can use the string to determine if the
camera is capturing images from the top or bottom side of the paper.

 Applications should browse the available camera devices in State 4 to
create a lookup table mapping the various camera filenames to the side
they represent. DAT_FILESYSTEM is not supported, then the Application
should watch for the strings “TOP” and “BOTTOM”.

Value Type: TW_STR255
Allowed Values: TWFY_CAMERA, TWFY_CAMERATOP and TWFY_CAMERABOTTOM

filenames maintained by the Source and accessible using the
DAT_FILESYSTEM triplet. This string must be exactly the same as that
supplied by the Source when the Application issues a DAT_FILESYSTEM
/ MSG_GETINFO (or related command).

 The Source must identify the exact camera used. This means that even if
the Source has been set to use a TWFY_CAMERA device, it must report the
TWFY_CAMERATOP or TWFY_CAMERABOTTOM device as
appropriate.

 If the Source does not support the use of DAT_FILESYSTEM, then it must
return the string “TOP” for images from the top side of the sheet of paper,
and “BOTTOM” for images on the bottom side of the sheet of paper.

See Also:

TWEI_ FRAMENUMBER

Description This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. TWAIN 1.9 Sources that support
extended image info must provide this information.

Value Type: TW_ UINT32
Allowed Values: 1 to 232-1
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

Chapter 8

8-332 TWAIN 1.9a Specification

TWEI_ FRAME

Description This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. TWAIN 1.9 Sources that support
extended image info must provide this information.

Value Type: TW_ FRAME
Allowed Values: n/a
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

TWEI_ PIXELFLAVOR

Description This value must correctly describe the pixel flavor of the current image, the
same data that is available through ICAP_PIXELFLAVOR. TWAIN 1.9
Sources that support extended image info must provide this information.

Value Type: TW_ UINT16
Allowed Values: TWPF_CHOCOLATE

TWPF_VANILLA
See Also: ICAP_PIXELFLAVOR

TWEI_SEGMENTNUMBER

Description This value identifies a segment of an image. Segments are created to allow
independent image processing strategies on portions of a document. For
instance, a document containing text with a picture may be segmented into
a bitonal image of the text and a color image of the picture. Sources that
use this item must support TWEI_FRAME, and must specify a left and top
value to position the segment in the final image. Segments may overlap.

 Applications should only request this value if they have set
CAP_SEGMENTED to TRUE.

Value Type: TW_ UINT16
Allowed Values: 1 to 216-1
See Also: DAT_IMAGELAYOUT

TW_IMAGELAYOUT

 Data Types and Data Structures

TWAIN 1.9a Specification 8-333

Data Argument Types that Don’t
Have Associated TW_Structures

Most of the DAT_xxxx components of the TWAIN operation triplets have a corresponding data
structure whose name begins with TW_ and then uses the same suffix as the DAT_ name.
However, the following do not use that pattern.

DAT_IMAGEFILEXFER
Acts on NULL data.

DAT_IMAGENATIVEXFER
Uses a TW_UINT32 variable.

• On Windows: In Win 3.1, the low word of this 32-bit integer is a handle variable to a
DIB (Device Independent Bitmap) located in memory. For Win 95 the handles fill the
entire field.

• On Macintosh: This 32-bit integer is a handle to a Picture (a PicHandle). It is a
QuickDraw picture located in memory.

DAT_NULL
Used by the Source to signal the need for an event to announce MSG_XFERREADY or
MSG_CLOSEDSREQ. (Used on Windows only)

DAT_PARENT
Used by the DG_CONTROL / DAT_PARENT / MSG_OPENDSM and MSG_CLOSEDSM
operations.

• On Windows: They act on a variable of type TW_INT32. Prior to the operation, the
application must write, a window handle to the application’s window that acts as the
“parent” for the Source’s user interface. In Win 3.1 this would be in the low word, in
Win 95 it will fill the entire field. (This must be done whether or not the Source’s
user interface will be used. The Source Manager uses this window handle to signal
the application when data is ready for transfer (MSG_XFERREADY) or the Source
needs to be closed (MSG_CLOSEDSREQ)).

• On Macintosh: These act on NULL data.

DAT_XFERGROUP
Used by the DG_CONTROL / DAT_XFERGROUP / MSG_GET operation. The data acted
on by this operation is a variable of type TW_UINT32. (The same as a DG_xxxx
designator.) The value of this variable is indeterminate prior to the operation. Following
the operation, a single bit is set indicating the Data Group of the transfer.

Chapter 8

8-334 TWAIN 1.9a Specification

Constants
Generic Constants

Constants (defined as) (values)

 TWON_PROTOCOLMINOR
TWON_PROTOCOLMAJOR

TWON_ARRAY
TWON_ENUMERATION
TWON_ONEVALUE
TWON_RANGE

TWON_ICONID
TWON_DSMID
TWON_DSMCODEID

TWON_DONTCARE8
TWON_DONTCARE16
TWON_DONTCARE32

0
1

3
4
5
6

962
461
63

0xff
0xffff
0xffffffff

Flags used in TW_MEMORY
 TWMF_APPOWNS

TWMF_DSMOWNS
TWMF_DSOWNS
TWMF_POINTER
TWMF_HANDLE

0x1
0x2
0x4
0x8
0x10

Palette types for TW_PALETTE8
 TWPA_RGB

TWPA_GRAY
TWPA_CMY

0
1
2

Events for TW_DEVICEEVENT
 TWDE_CHECKAUTOMATICCAPTURE

TWDE_CHECKBATTERY
TWDE_CHECKDEVICEONLINE
TWDE_CHECKFLASH
TWDE_CHECKPOWERSUPPLY
TWDE_CHECKRESOLUTION
TWDE_DEVICEADDED
TWDE_DEVICEOFFLINE
TWDE_DEVICEREADY
TWDE_DEVICEREMOVED
TWDE_IMAGECAPTURED
TWDE_IMAGEDELETED
TWDE_PAPERDOUBLEFEED
TWDE_PAPERJAM
TWDE_LAMPFAILURE
TWDE_POWERSAVE
TWDE_POWERSAVENOTIFY

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 Data Types and Data Structures

TWAIN 1.9a Specification 8-335

File Types for TW_FILESYSTEM
 TWFT_CAMERA

TWFT_CAMERATOP
TWFT_CAMERABOTTOM
TWFT_CAMERAPREVIEW
TWFT_DOMAIN
TWFT_HOST
TWFT_DIRECTORY
TWFT_IMAGE
TWFT_UNKNOWN

0
1
2
3
4
5
6
7
8

ItemTypes for Capability Container
structures

 TWTY_INT8
TWTY_INT16
TWTY_INT32

TWTY_UINT8
TWTY_UINT16
TWTY_UINT32

TWTY_BOOL

TWTY_FIX32

TWTY_FRAME

TWTY_STR32
TWTY_STR64
TWTY_STR128
TWTY_STR255
TWTY_STR1024
TWTY_UNI512

0x0000
0x0001
0x0002

0x0003
0x0004
0x0005

0x0006

0x0007

0x0008

0x0009
0x000a
0x000b
0x000c
0x000d
0x000e

Chapter 8

8-336 TWAIN 1.9a Specification

Capability Constants

CAP_CLEARBUFFERS
 TWCB_AUTO

TWCB_CLEAR
TWCB_NOCLEAR

0
1
2

CAP_POWERSUPPLY
 TWPS_EXTERNAL

TWPS_BATTERY
0
1

ICAP_BITDEPTHREDUCTION values (defined as)
 TWBR_THRESHOLD

TWBR_HALFTONES
TWBR_CUSTHALFTONE
TWBR_DIFFUSION

0
1
2
3

ICAP_BITORDER values
 TWBO_LSBFIRST

TWBO_MSBFIRST
0
1

ICAP_COMPRESSION values
 TWCP_NONE

TWCP_PACKBITS
TWCP_GROUP31D
TWCP_GROUP31DEOL
TWCP_GROUP32D
TWCP_GROUP34
TWCP_JPEG
TWCP_LZW
TWCP_JBIG
TWCP_PNG
TWCP_RLE4
TWCP_RLE8
TWCP_BITFIELDS

0
1
2
3
4
5
6
7
8
9
10
11
12

ICAP_FILTER values
 TWFT_RED

TWFT_GREEN
TWFT_BLUE
TWFT_NONE
TWFT_WHITE
TWFT_CYAN
TWFT_MAGENTA
TWFT_YELLOW
TWFT_BLACK

0
1
2
3
4
5
6
7
8

ICAP_FLASHUSED2
 TWFL_NONE

TWFL_OFF
TWFL_ON
TWFL_AUTO
TWFL_REDEYE

0
1
2
3
4

ICAP_IMAGEFILEFORMAT values
 TWFF_TIFF

TWFF_PICT
0
1

 Data Types and Data Structures

TWAIN 1.9a Specification 8-337

TWFF_BMP
TWFF_XBM
TWFF_JFIF
TWFF_FPX
TWFF_TIFFMULTI
TWFF_PNG
TWFF_SPIFF
TWFF_EXIF

2
3
4
5
6
7
8
9

ICAP_IMAGEFILTER
 TWIF_NONE

TWIF_AUTO
TWIF_LOWPASS
TWIF_BANDPASS
TWIF_HIGHPASS

0
1
2
3
4

ICAP_LIGHTPATH values
 TWLP_REFLECTIVE

TWLP_TRANSMISSIVE
0
1

ICAP_LIGHTSOURCE values
 TWLS_RED

TWLS_GREEN
TWLS_BLUE
TWLS_NONE
TWLS_WHITE
TWLS_UV
TWLS_IR

0
1
2
3
4
5
6

ICAP_NOISEFILTER
 TWNF_NONE

TWNF_AUTO
TWNF_LONEPIXEL
TWNF_MAJORITYRULE

0
1
2
3

ICAP_ORIENTATION values
 TWOR_ROT0

TWOR_ROT90
TWOR_ROT180
TWOR_ROT270
TWOR_PORTRAIT
TWOR_LANDSCAPE

0
1
2
3
TWOR_ROT0
TWOR_ROT270

ICAP_OVERSCAN
 TWOV_NONE

TWOV_AUTO
TWOV_TOPBOTTOM
TWOV_LEFTRIGHT
TWOV_ALL

0
1
2
3
4

ICAP_PLANARCHUNKY values
 TWPC_CHUNKY

TWPC_PLANAR
0
1

ICAP_PIXELFLAVOR values
 TWPF_CHOCOLATE

TWPF_VANILLA
0
1

Chapter 8

8-338 TWAIN 1.9a Specification

ICAP_PIXELTYPE values
 TWPT_BW

TWPT_GRAY
TWPT_RGB
TWPT_PALETTE
TWPT_CMY
TWPT_CMYK
TWPT_YUV
TWPT_YUVK
TWPT_CIEXYZ
TWPT_LAB

0
1
2
3
4
5
6
7
8
9

ICAP_SUPPORTEDSIZES values
 TWSS_NONE

TWSS_A4LETTER
TWSS_B5LETTER
TWSS_USLETTER
TWSS_USLEGAL
TWSS_A5
TWSS_B4
TWSS_B6
// removed
TWSS_USLEDGER
TWSS_USEXECUTIVE
TWSS_A3
TWSS_B3
TWSS_A6
TWSS_C4
TWSS_C5
TWSS_C6
// 1.8 Additions
TWSS_4A0
TWSS_2A0
TWSS_A0
TWSS_A1
TWSS_A2
TWSS_A4
TWSS_A7
TWSS_A8
TWSS_A9
TWSS_A10
TWSS_ISOB0
TWSS_ISOB1
TWSS_ISOB2
TWSS_ISOB3
TWSS_ISOB4
TWSS_ISOB5
TWSS_ISOB6
TWSS_ISOB7
TWSS_ISOB8
TWSS_ISOB9
TWSS_ISOB10
TWSS_JISB0
TWSS_JISB1
TWSS_JISB2
TWSS_JISB3
TWSS_JISB4
TWSS_JISB5

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
TWSS_A4LETTER
22
23
24
25
26
27
28
TWSS_B3
TWSS_B4
29
TWSS_B6
30
31
32
33
34
35
36
37
38
TWSS_B5LETTER

 Data Types and Data Structures

TWAIN 1.9a Specification 8-339

TWSS_JISB6
TWSS_JISB7
TWSS_JISB8
TWSS_JISB9
TWSS_JISB10
TWSS_C0
TWSS_C1
TWSS_C2
TWSS_C3
TWSS_C7
TWSS_C8
TWSS_C9
TWSS_C10
TWSS_USEXECUTIVE
TWSS_BUSINESSCARD

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

ICAP_XFERMECH values
 TWSX_NATIVE

TWSX_FILE
TWSX_MEMORY
TWSX_FILE2

0
1
2
3

ICAP_UNITS values
 TWUN_INCHES

TWUN_CENTIMETERS
TWUN_PICAS
TWUN_POINTS
TWUN_TWIPS
TWUN_PIXELS

0
1
2
3
4
5

Language Constants

Language (defined as)
 TWLG_USERLOCALE

TWLG_DAN
TWLG_DUT
TWLG_ENG
TWLG_FCF
TWLG_FIN
TWLG_FRN
TWLG_GER
TWLG_ICE
TWLG_ITN
TWLG_NOR
TWLG_POR
TWLG_SPA
TWLG_SWE
TWLG_USA

TWLG_AFRIKAANS
TWLG_ALBANIA
TWLG_ARABIC
TWLG_ARABIC_ALGERIA
TWLG_ARABIC_BAHRAIN
TWLG_ARABIC_EGYPT
TWLG_ARABIC_IRAQ

-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20

Chapter 8

8-340 TWAIN 1.9a Specification

TWLG_ARABIC_JORDAN
TWLG_ARABIC_KUWAIT
TWLG_ARABIC_LEBANON
TWLG_ARABIC_LIBYA
TWLG_ARABIC_MOROCCO
TWLG_ARABIC_OMAN
TWLG_ARABIC_QATAR
TWLG_ARABIC_SAUDIARABIA
TWLG_ARABIC_SYRIA
TWLG_ARABIC_TUNISIA
TWLG_ARABIC_UAE
TWLG_ARABIC_YEMEN
TWLG_BASQUE
TWLG_BYELORUSSIAN
TWLG_BULGARIAN
TWLG_CATALAN
TWLG_CHINESE
TWLG_CHINESE_HONGKONG
TWLG_CHINESE_PRC
TWLG_CHINESE_SINGAPORE
TWLG_CHINESE_SIMPLIFIED
TWLG_CHINESE_TAIWAN
TWLG_CHINESE_TRADITIONAL
TWLG_CROATIA
TWLG_CZECH
TWLG_DANISH
TWLG_DUTCH
TWLG_DUTCH_BELGIAN
TWLG_ENGLISH
TWLG_ENGLISH_AUSTRALIAN
TWLG_ENGLISH_CANADIAN
TWLG_ENGLISH_IRELAND
TWLG_ENGLISH_NEWZEALAND
TWLG_ENGLISH_SOUTHAFRICA
TWLG_ENGLISH_UK
TWLG_ENGLISH_USA
TWLG_ESTONIAN
TWLG_FAEROESE
TWLG_FARSI
TWLG_FINNISH
TWLG_FRENCH
TWLG_FRENCH_BELGIAN
TWLG_FRENCH_CANADIAN
TWLG_FRENCH_LUXEMBOURG
TWLG_FRENCH_SWISS
TWLG_GERMAN
TWLG_GERMAN_AUSTRIAN
TWLG_GERMAN_LUXEMBOURG
TWLG_GERMAN_LIECHTENSTEIN
TWLG_GERMAN_SWISS
TWLG_GREEK
TWLG_HEBREW
TWLG_HUNGARIAN
TWLG_ICELANDIC
TWLG_INDONESIAN
TWLG_ITALIAN
TWLG_ITALIAN_SWISS
TWLG_JAPANESE

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
TWLG_DAN
TWLG_DUT
46
TWLG_ENG
47
48
49
50
51
52
TWLG_USA
53
54
55
TWLG_FIN
TWLG_FRN
56
TWLG_FCF
57
58
TWLG_GER
59
60
61
62
63
64
65
TWLG_ICE
66
TWLG_ITN
67
68

 Data Types and Data Structures

TWAIN 1.9a Specification 8-341

TWLG_KOREAN
TWLG_KOREAN_JOHAB
TWLG_LATVIAN
TWLG_LITHUANIAN
TWLG_NORWEGIAN
TWLG_NORWEGIAN_BOKMAL
TWLG_NORWEGIAN_NYNORSK
TWLG_POLISH
TWLG_PORTUGUESE
TWLG_PORTUGUESE_BRAZIL
TWLG_ROMANIAN
TWLG_RUSSIAN
TWLG_SERBIAN_LATIN
TWLG_SLOVAK
TWLG_SLOVENIAN
TWLG_SPANISH
TWLG_SPANISH_MEXICAN
TWLG_SPANISH_MODERN
TWLG_SWEDISH
TWLG_THAI
TWLG_TURKISH
TWLG_UKRANIAN
TWLG_ASSAMESE
TWLG_BENGALI
TWLG_BIHARI
TWLG_BODO
TWLG_DOGRI
TWLG_GUJARATI
TWLG_HARYANVI
TWLG_HINDI
TWLG_KANNADA
TWLG_KASHMIRI
TWLG_MALAYALAM
TWLG_MARATHI
TWLG_MARWARI
TWLG_MEGHALAYAN
TWLG_MIZO
TWLG_NAGA
TWLG_ORISSI
TWLG_PUNJABI
TWLG_PUSHTU
TWLG_SERBIAN_CYRILLIC
TWLG_SIKKIMI
TWLG_SWEDISH_FINLAND
TWLG_TAMIL
TWLG_TELUGU
TWLG_TRIPURI
TWLG_URDU
TWLG_VIETNAMESE

69
70
71
72
TWLG_NOR
73
74
75
TWLG_POR
76
77
78
79
80
81
TWLG_SPA
82
83
TWLG_SWE
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

Chapter 8

8-342 TWAIN 1.9a Specification

TWAIN 1.9a Specification 9-343

9
Capabilities

Chapter Contents
Overview 344
Required Capabilities 344
Capabilities in Categories of Functionality 345
The Capability Listings 351

Chapter 9

9-344 TWAIN 1.9a Specification

Overview
Sources may support a large number of capabilities but are required to support very few. To
determine if a capability is supported by a Source, the application can query the Source using a
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, or
MSG_GETDEFAULT operation. The application specifies the particular capability by storing
its identifier in the Cap field of the TW_CAPABILITY structure. This is the structure pointed to
by the pData parameter in the DSM_Entry() call.

DG_CONTROL / DAT_CAPABILITY operations for capability negotiation include:

MSG_GET Returns the available settings for this capability, as well as the
Current and Default settings (if the container is
TW_ENUMERATION or TW_RANGE).

MSG_GETCURRENT Returns the Current setting for this capability.

MSG_GETDEFAULT Returns the value of the Source’s preferred Default values.

MSG_RESET Returns the capability to its TWAIN Default (power-on)
condition (i.e. all previous negotiation is ignored).

MSG_SET Allows the application to set the Current value of a capability or
even to restrict the available values to some subset of the
Source’s power-on set of values. Sources are strongly
encouraged to allow the application to set as many of its
capabilities as possible, and further to reflect these changes in
the Source’s user interface. This will ensure that the user can
only select images with characteristics that are useful to the
consuming application.

Required Capabilities
The list of required capabilities can be found in Chapter 5.

Sources must implement and make available to TWAIN applications the advertised features of
the devices they support. This is especially true in “no-UI mode.” Thus, when a capability is
listed as required by none, a Source must still support it if its device supports it.

 Capabilities

TWAIN 1.9a Specification 9-345

Capabilities in Categories of Functionality

Asynchronous Device Events
CAP_DEVICEEVENT MSG_SET selects which events the application wants the source

to report; MSG_RESET returns the preferred settings of the
source.

Audible Alarms
CAP_ALARMS Turns specific audible alarms on and off.

CAP_ALARMVOLUME Controls the volume of a device’s audible alarm.

Audio
ACAP_AUDIOFILEFORMAT Informs application which audio file formats the source can

generate.

ACAP_XFERMECH Allows application and source to identify which audio transfer
mechanisms they have in common.

Automatic Adjustments
ICAP_AUTOMATICBORDERDETECTION Turns automatic border detection on and off.

ICAP_AUTOMATICDESKEW Turns automatic skew correction on and off.

ICAP_AUTODISCARDBLANKPAGES Discards blank pages.

ICAP_AUTOMATICROTATE When TRUE, depends on source to automatically
rotate the image.

ICAP_FLIPROTATION Orients images that flip orientation every other image.

Automatic Capture
CAP_AUTOMATICCAPTURE Specifies the number of images to automatically capture.

CAP_TIMEBEFOREFIRSTCAPTURE Selects the number of seconds before the first picture taken.

CAP_TIMEBETWEENCAPTURES Selects the hundredths of a second to wait between pictures
taken.

Automatic Scanning
CAP_AUTOSCAN Enables the source’s automatic document scanning process.

CAP_CLEARBUFFERS MSG_GET reports presence of data in scanner’s buffers;
MSG_SET clears the buffers.

CAP_MAXBATCHBUFFERS Describes the number of pages that the scanner can buffer when
CAP_AUTOSCAN is enabled.

Chapter 9

9-346 TWAIN 1.9a Specification

Bar Code Detection Search Parameters
ICAP_BARCODEDETECTIONENABLED Turns bar code detection on and off.

ICAP_SUPPORTEDBARCODETYPES Provides a list of bar code types that can be detected by
current data source.

ICAP_BARCODEMAXSEARCHPRIORITIES Specifies the maximum number of supported search
priorities.

ICAP_BARCODESEARCHPRIORITIES A prioritized list of bar code types dictating the order in
which they will be sought.

ICAP_BARCODESEARCHMODE Restricts bar code searching to certain orientations, or
prioritizes one orientation over another.

ICAP_BARCODEMAXRETRIES Restricts the number of times a search will be retried if
no bar codes are found.

ICAP_BARCODETIMEOUT Restricts the total time spent on searching for bar codes
on a page.

Capability Negotiation Parameters
CAP_EXTENDEDCAPS Capabilities negotiated in States 5 & 6

CAP_SUPPORTEDCAPS Inquire Source’s capabilities valid for MSG_GET

Color
ICAP_FILTER Color characteristics of the subtractive filter applied to the

image data

ICAP_GAMMA Gamma correction value for the image data

ICAP_PLANARCHUNKY Color data format - Planar or Chunky

Compression
ICAP_BITORDERCODES CCITT Compression

ICAP_CCITTKFACTOR CCITT Compression

ICAP_COMPRESSION Compression method for Buffered Memory Transfers

ICAP_JPEGPIXELTYPE JPEG Compression

ICAP_JPEGQUALITY JPEG quality

ICAP_PIXELFLAVORCODES CCITT Compression

ICAP_TIMEFILL CCITT Compression

 Capabilities

TWAIN 1.9a Specification 9-347

Device Parameters
CAP_DEVICEONLINE Determines if hardware is on and ready

CAP_DEVICETIMEDATE Date and time of a device’s clock.

CAP_SERIALNUMBER The serial number of the currently selected source device.

ICAP_EXPOSURETIME Exposure time used to capture the image, in seconds

ICAP_FLASHUSED2 For devices that support a flash, MSG_SET selects the flash to be
used; MSG_GET reports the current setting.

ICAP_IMAGEFILTER For devices that support image filtering, selects the algorithm to be
used.

ICAP_LAMPSTATE Is the lamp on?

ICAP_LIGHTPATH Image was captured transmissively or reflectively

ICAP_LIGHTSOURCE Describes the color characteristic of the light source used to acquire
the image

ICAP_NOISEFILTER For devices that support noise filtering, selects the algorithm to be
used.

ICAP_OVERSCAN For devices that support overscanning, controls whether additional
rows or columns are appended to the image.

ICAP_PHYSICALHEIGHT Maximum height Source can acquire (in ICAP_UNITS)

ICAP_PHYSICALWIDTH Maximum width Source can acquire (in ICAP_UNITS)

ICAP_UNITS Unit of measure (inches, centimeters, etc.)

ICAP_ZOOMFACTOR With MSG_GET, returns all camera supported lens zooming range.

Imprinter/Endorser Functionality
CAP_PRINTER MSG_GET returns current list of available printer devices;

MSG_SET selects the device for negotiation.

CAP_PRINTERENABLED Turns the current CAP_PRINTER device on or off.

CAP_PRINTERINDEX Starting number for the CAP_PRINTER device.

CAP_PRINTERMODE Specifies appropriate current CAP_PRINTER device mode.

CAP_PRINTERSTRING String(s) to be used in the string component when
CAP_PRINTER device is enabled.

CAP_PRINTERSUFFIX String to be used as current CAP_PRINTER device’s suffix.

Image Information
CAP_AUTHOR Author of acquired image (may include a copyright string)

CAP_CAPTION General note about acquired image

CAP_TIMEDATE Date and Time the image was acquired (entered State 7)

Chapter 9

9-348 TWAIN 1.9a Specification

Image Parameters for Acquire
ICAP_AUTOBRIGHT Enable Source’s Auto-brightness function

ICAP_BRIGHTNESS Source brightness values

ICAP_CONTRAST Source contrast values

ICAP_HIGHLIGHT Lightest highlight, values lighter than this value will be set to
this value

ICAP_ORIENTATION Defines which edge of the paper is the top: Portrait or
Landscape

ICAP_ROTATION Source can, or should, rotate image this number of degrees

ICAP_SHADOW Darkest shadow, values darker than this value will be set to this
value

ICAP_XSCALING Source Scaling value (1.0 = 100%) for x-axis

ICAP_YSCALING Source Scaling value (1.0 = 100%) for y-axis

Image Type
ICAP_BITDEPTH Pixel bit depth for Current value of ICAP_PIXELTYPE

ICAP_BITDEPTHREDUCTION Allows a choice of the reduction method for bit depth loss

ICAP_BITORDER Specifies how the bytes in an image are filled by the Source

ICAP_CUSTHALFTONE Square-cell halftone (dithering) matrix to be used

ICAP_HALFTONES Source halftone patterns

ICAP_PIXELFLAVOR Sense of the pixel whose numeric value is zero

ICAP_PIXELTYPE The type of pixel data (B/W, gray, color, etc.)

ICAP_THRESHOLD Specifies the dividing line between black and white values

Language Support
CAP_LANGUAGE Allows application and source to identify which languages they

have in common.

Pages
ICAP_FRAMES Size and location of frames on page

ICAP_MAXFRAMES Maximum number of frames possible per page

ICAP_SUPPORTEDSIZES Fixed frame sizes for typical page sizes

Paper Handling
CAP_AUTOFEED MSG_SET to TRUE to enable Source’s automatic feeding

CAP_CLEARPAGE MSG_SET to TRUE to eject current page and leave acquire area
empty

CAP_FEEDERALIGNMENT If TRUE, feeder is centered; FALSE if it is free-floating.

 Capabilities

TWAIN 1.9a Specification 9-349

CAP_FEEDERENABLED If TRUE, Source’s feeder is available

CAP_FEEDERLOADED If TRUE, Source has documents loaded in feeder (MSG_GET
only)

CAP_FEEDERORDER Specifies whether feeder starts with top of first or last page.

CAP_FEEDPAGE MSG_SET to TRUE to eject current page and feed next page

CAP_PAPERBINDING

CAP_PAPERDETECTABLE Determines whether source can detect documents on the ADF
or flatbed.

CAP_REACQUIREALLOWED

CAP_REWINDPAGE MSG_SET to TRUE to do a reverse feed

Patch Code Detection
ICAP_PATCHCODEDETECTIONENABLED Turns patch code detection on and off.

ICAP_SUPPORTEDPATCHCODETYPES List of patch code types that can be detected by
current data source.

ICAP_PATCHCODEMAXSEARCHPRIORITIES Maximum number of search priorities.

ICAP_PATCHCODESEARCHPRIORITIES List of patch code types dictating the order in which
patch codes will be sought.

ICAP_PATCHCODESEARCHMODE Restricts patch code searching to certain orientations,
or prioritizes one orientation over another.

ICAP_PATCHCODEMAXRETRIES Restricts the number of times a search will be retried
if none are found on a page.

ICAP_PATCHCODETIMEOUT Restricts total time for searching for a patch code on
a page.

Power Monitoring
CAP_BATTERYMINUTES The minutes of battery power remaining on a device.

CAP_BATTERYPERCENTAGE With MSG_GET, indicates battery power status.

CAP_POWERSAVETIME With MSG_SET, sets the camera power down timer in seconds;
with MSG_GET, returns the current setting of the power down
time.

CAP_POWERSUPPLY MSG_GET reports the kinds of power available;
MSG_GETCURRENT reports the current power supply to use.

Resolution
ICAP_XNATIVERESOLUTION Native optical resolution of device for x-axis

ICAP_XRESOLUTION Current/Available optical resolutions for x-axis

ICAP_YNATIVERESOLUTION Native optical resolution of device for y-axis

ICAP_YRESOLUTION Current/Available optical resolutions for y-axis

Chapter 9

9-350 TWAIN 1.9a Specification

Transfers
CAP_XFERCOUNT Number of images the application is willing to accept this

session

ICAP_COMPRESSION Buffered Memory transfer compression schemes

ICAP_IMAGEFILEFORMAT File formats for file transfers

ICAP_TILES Tiled image data

ICAP_XFERMECH Transfer mechanism - used to learn options and set-up for
upcoming transfer

ICAP_UNDEFINEDIMAGESIZE The application will accept undefined image size

User Interface
CAP_CAMERAPREVIEWUI Queries the source for UI support for preview mode.

CAP_ENABLEDSUIONLY Queries an application to see if it implements the new user
interface settings dialog.

CAP_INDICATORS Use the Source’s progress indicator? (valid only when
ShowUI==FALSE)

CAP_UICONTROLLABLE Indicates that Source supports acquisitions with UI disabled

 Capabilities

TWAIN 1.9a Specification 9-351

The Capability Listings
The following section lists descriptions of all TWAIN capabilities in alphabetical order. The
format of each capability entry is:

NAME OF CAPABILITY

Description

Description of the capability

Application

(Optional) Information for the application

Source

(Optional) Information for the Source

Values

Type: Data structure for the capability.

Default Value: The value the Source must use as the Current value when entering
State 4 (following DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS).

 This is the value the Source resets the Current value to when it receives
a MSG_RESET operation.

 The Source reports its preferred Default value when it receives a
MSG_GETDEFAULT. The Source’s preferred value may be different
from the TWAIN Default value.

Allowed Values: Definition of the values allowed for this capability.

Container for MSG_GET Acceptable containers for use on MSG_GET operations.
Container for MSG_SET Acceptable containers for use on MSG_SET operations.

Required By

If a Source or application is required to support the capability.

Source Required Operations

Operations the Source is required to support.

See Also

Associated capabilities and data structures.

Chapter 9

9-352 TWAIN 1.9a Specification

ACAP_AUDIOFILEFORMAT

Description

Informs the application which audio file formats the Source can generate (MSG_GET). Tells the
Source which audio file formats the application can handle (MSG_SET).

Application

Use this ACAP to determine which formats are available for audio file transfers, but use the
DG_CONTROL / DAT_SETUPAUDIOFILEXFER / MSG_SET operation to specify the format
to be used for a particular acquisition.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWAF_WAV (Windows)
TWAF_AIFF (Macintosh)

Allowed Values: TWAF_WAV 0
TWAF_AIFF 1
TWAF_AU 3
TWAF_SND 4

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DG_CONTROL / DAT_SETUPAUDIOFILEXFER / MSG_SET
DG_AUDIO /DAT_AUDIOFILEXFER / MSG_GET

 Capabilities

TWAIN 1.9a Specification 9-353

ACAP_XFERMECH

Description

Allows the Application and Source to identify which audio transfer mechanisms they have in
common.

Application

The current setting of ACAP_XFERMECH must match the constant used by the application to
specify the audio transfer mechanism when starting the transfer using the triplet: DG_AUDIO
/ DAT_AUDIOxxxxXFER / MSG_GET.

Values

Type: TW_UINT16

Default Value: TWSX_NATIVE
Allowed Values: TWSX_NATIVE 0

TWSX_FILE 1
TWSX_FILE2 3

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Audio Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

DG_AUDIO / DAT_AUDIOxxxxXFER / MSG_GET

Chapter 9

9-354 TWAIN 1.9a Specification

CAP_ALARMS

Description

Turns specific audible alarms on and off.

Application

Note that an application may opt to turn off all alarms by issuing a MSG_SET with no data.
Therefore, an application should also be prepared to receive an empty array from a Source with
an MSG_GET. (i.e., pTW_ARRAY->NumItems == 0)

The easiest way to test for allowed values is to try to set them all with MSG_SET. If not all are
allowed, the Source will return TWCC_CHECKSTATUS with those values that it supports.

Source

It is worth noting that the alarms do not have to be present in the device for a Source to make
use of this capability. If the device is capable of alerting the Source to these various kinds of
conditions, but is unable to generate the alarms, itself; then the Source may opt to generate
them on its behalf.

TWAL_ALARM is a catchall for alarms not explicitly listed. It is also used where a device only
provides control over a single, multi-use alarm. For instance, if a device beeps for both jams
and bar-codes, but doesn’t allow independent control of the alarms, then it should report
TWAL_ALARM to cover them, and not TWAL_BARCODE, TWAL_JAM.

TWAL_FEEDERERROR covers paper handling errors such as jams, double-feeds, skewing and
the like; conditions that most likely stop scanning.

TWAL_FEEDERWARNING covers non-fatal events, such as feeder empty.

TWAL_DOUBLEFEED, TWAL_JAM and TWALSKEW cover paper handling errors.

TWAL_BARCODE and TWAL_PATCHCODE generate alarms when an image with this kind
of data is recognized.

TWAL_POWER generates alarms for any changes in power to the device.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

 Capabilities

TWAIN 1.9a Specification 9-355

Values

Type: TW_UINT16

Default Value: No default

Allowed Values: TWAL_ALARM 0
TWAL_FEEDERERROR 1
TWAL_FEEDERWARNING 2
TWAL_BARCODE 3
TWAL_DOUBLEFEED 4
TWAL_JAM 5
TWAL_PATCHCODE 6
TWAL_POWER 7
TWAL_SKEW 8

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: TW_ARRAY

Required By

None

Source Required Operations

None

See Also

CAP_ALARMVOLUME

Chapter 9

9-356 TWAIN 1.9a Specification

CAP_ALARMVOLUME

Description

The volume of a device’s audible alarm. Note that this control affects the volume of all alarms;
no specific volume control for individual types of alarms is provided.

Application

Take note of the range step, some Sources may only offer a step of 100, which turns the alarm
on or off.

Source

If 0, the audible alarm is turned off. All other values control the volume of the alarm.

Windows only - If the alarm is managed in the Source, as opposed to the device, then it should
be consistent with the control panel Accessibility Options (i.e., the user should get visual
notification if that is the current setting for the desktop).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: No default
Allowed Values: 0 - 100
Container for MSG_GET: TW_ONEVALUE,

TW_RANGE
Container for MSG_SET: TW_ONEVALUE,

TW_RANGE

Required By

None

Source Required Operations

None

See Also

CAP_ALARMS

 Capabilities

TWAIN 1.9a Specification 9-357

CAP_AUTHOR

Description

The name or other identifying information about the Author of the image. It may include a
copyright string.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR128

Default Value: “\0”
Allowed Values: Any string

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_CAPTION
CAP_TIMEDATE

Chapter 9

9-358 TWAIN 1.9a Specification

CAP_AUTOFEED

Description

If TRUE, the Source will automatically feed the next page from the document feeder after the
number of frames negotiated for capture from each page are acquired.
CAP_FEEDERENABLED must be TRUE to use this capability.

Application

Set the capability to TRUE to enable the Source’s automatic feed process, or FALSE to disable it.
After the completion of each transfer, check TW_PENDINGXFERS. Count to determine if the
Source has more images to transfer. A -1 means there are more images to transfer but the exact
number is not known.

CAP_FEEDERLOADED indicates whether the Source’s feeder is loaded. (The automatic feed
process continues whenever this capability is TRUE.)

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED (capability is not supported in current settings).

If it is supported, return TWRC_SUCCESS and enable the device’s automatic feed process:
After all frames negotiated for capture from each page are acquired, put the current document
in the output area and advance the next document from the input area to the feeder image
acquisition area. If the feeder input area is empty, the automatic feeding process is suspended
but should continue when the feeder is reloaded.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

All Sources with Feeder Devices

 Capabilities

TWAIN 1.9a Specification 9-359

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

CAP_CLEARPAGE
CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_FEEDPAGE
CAP_REWINDPAGE

Chapter 9

9-360 TWAIN 1.9a Specification

CAP_AUTOMATICCAPTURE

Description

The number of images to automatically capture. This does not refer to the number of images to
be sent to the Application, use CAP_XFERCOUNT for that.

Source

If 0, Automatic Capture is disabled If 1 or greater, that number of images is captured by the
device.

Automatic capture implies that the device is capable of capturing images without the presence
of the Application. This means that it must be possible for the Application to close the Source
and reopen it later, after the images have been captured.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: 0
Allowed Values: 0 or greater

Container for MSG_GET: TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ONEVALUE,
TW_RANGE

Required By

None

Source Required Operations

None

See Also

CAP_TIMEBEFOREFIRSTCAPTURE
CAP_TIMEBETWEENCAPTURES
CAP_XFERCOUNT

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY

 Capabilities

TWAIN 1.9a Specification 9-361

CAP_AUTOSCAN

Description

This capability is intended to boost the performance of a Source. The fundamental assumption
behind AutoScan is that the device is able to capture the number of images indicated by the
value of CAP_XFERCOUNT without waiting for the Application to request the image transfers.
This is only possible if the device has internal buffers capable of caching the images it captures.

The default behavior is undefined, because some high volume devices are incapable of
anything but CAP_AUTOSCAN being equal to TRUE. However, if a Source supports FALSE,
it should use it as the mandatory default, since this best describes the behavior of pre-1.8
TWAIN Applications.

Application

The application should check the TW_PENDINGXFERS.Count, and continue to scan until it
becomes 0.

When AutoScan is set to TRUE, the Application should not rely on just the paper sensors (for
example, CAP_FEEDERLOADED) to determine if there are images to be transferred. The
latency between the Source and the Application makes it very likely that at the time the sensor
reports FALSE, there may be more than one image waiting for the transfer inside of the device’s
buffers. Applications should use the TW_PENDINGXFERS.Count returned from
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to determine whether or not there
are more images to be transferred.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: No default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Chapter 9

9-362 TWAIN 1.9a Specification

Source Required Operations

None

See Also

CAP_AUTOFEED
CAP_CLEARBUFFERS
CAP_MAXBATCHBUFFERS

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER

 Capabilities

TWAIN 1.9a Specification 9-363

CAP_BATTERYMINUTES

Description

The minutes of battery power remaining to the device.

Source

-2 indicates that the available power is infinite.

-1 indicates that the device cannot report the remaining battery power.

0 and greater indicates the minutes of battery life remaining.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: No default
Allowed Values: -2, -1, 0, and greater

Container for MSG_GET: TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

CAP_POWERSUPPLY,
CAP_BATTERYPERCENTAGE

Chapter 9

9-364 TWAIN 1.9a Specification

CAP_BATTERYPERCENTAGE

Description

When used with MSG_GET, return the percentage of battery power level on camera. If -1 is
returned, it indicates that the battery is not present.

Application

Use this capability with MSG_GET to indicate to the user about the battery power status. It is
recommended to use CAP_POWERSUPPLY to identify the power source first.

Source

-2 indicates that the available power is infinite.

-1 indicates that the device cannot report the remaining battery power.

0 to 100 indicates the percentage of battery life remaining.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT16

Default Value: None
Allowed Values: -2, -1, 0 to 100.

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: Not allowed

Required By

None. Highly recommended for digital cameras that are equipped with batteries.

Source Required Operations

MSG_GET

See Also

CAP_POWERSUPPLY,
CAP_BATTERYMINUTES

 Capabilities

TWAIN 1.9a Specification 9-365

CAP_CAMERAPREVIEWUI

Description

This capability queries the Source for UI support for preview mode. If TRUE, the Source
supports preview UI.

Application

Use this capability to query the preview UI support by the Source. However, the application
can choose to use the Source’s UI or not even if the Source supports it.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: None
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: Not allowed.

Required By

None. Highly recommended for digital cameras.

Source Required Operations

MSG_GET

Chapter 9

9-366 TWAIN 1.9a Specification

CAP_CAPTION

Description

A general note about the acquired image.

Source

If not supported, the Source should return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR255

Default Value: “\0”
Allowed Values: Any string

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_AUTHOR
CAP_TIMEDATE

 Capabilities

TWAIN 1.9a Specification 9-367

CAP_CLEARBUFFERS

Description

MSG_GET reports the presence of data in the scanner’s buffers. MSG_SET with a value of
TWCB_CLEAR immediately clears the buffers.

Source

MSG_SET: TWCB_AUTO causes the Source to automatically clear the buffers when it
transitions from state 4 to state 5, or from state 5 to state 4.

MSG_SET: TWCB_CLEAR causes the Source to immediately clear its buffers.

MSG_SET: TWCB_NOCLEAR causes the Source to preserve images in the buffers. If the
Source transitions from state 4 to state 5 with images in its buffer, it will immediately report
MSG_XFERREADY, and deliver those images before any new images scanned by the user.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWCB_AUTO
Allowed Values: TWCB_AUTO 0

TWCB_CLEAR 1
TWCB_NOCLEAR 2

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_AUTOSCAN
CAP_MAXBATCHBUFFERS

Chapter 9

9-368 TWAIN 1.9a Specification

CAP_CLEARPAGE

Description

If TRUE, the Source will eject the current page being acquired from and will leave the feeder
acquire area empty.

If CAP_AUTOFEED is TRUE, a fresh page will be advanced.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5
and 6.

Application

Do a MSG_SET on this capability to advance the document in the feeder acquire area to the
output area and abort all transfers pending on this page.

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source user interface).

This capability can also be used while CAP_AUTOFEED equals TRUE to abort all remaining
transfers on this page and continue with the next page.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED (capability is not supported in current settings).

If supported, advance the document in the feeder-acquire area to the output area and abort all
pending transfers from this page.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The
Source should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

 Capabilities

TWAIN 1.9a Specification 9-369

Source Required Operations

None

See Also

CAP_AUTOFEED
CAP_EXTENDEDCAPS
CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_FEEDPAGE
CAP_REWINDPAGE

Chapter 9

9-370 TWAIN 1.9a Specification

CAP_CUSTOMDSDATA

Description

Allows the application to query the data source to see if it supports the new operation triplets
DG_CONTROL/ DAT_CUSTOMDSDATA / MSG_GET and DG_CONTROL/
DAT_CUSTOMDSDATA / MSG_SET.

If TRUE, the source will support the DG_CONTROL/ DAT_CUSTOMDSDATA/MSG_GET
message.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: Set not allowed

Required By

None

Source Required Operations

None

See Also

DG_CONTROL/DAT_CUSTOMDSDATA /MSG_GET

 Capabilities

TWAIN 1.9a Specification 9-371

CAP_DEVICEEVENT

Description

MSG_SET selects which events the Application wants the Source to report. MSG_GET gets the
current setting. MSG_RESET resets the capability to the empty array (no events set).

TWDE_CHECKAUTOMATICCAPTURE: The automatic capture settings on the device
have been changed by the user.

TWDE_CHECKBATTERY: The status of the battery has changed.
TWDE_CHECKFLASH: The flash setting on the device has been changed by the

user.
TWDE_CHECKPOWERSUPPLY: The power supply has been changed (for instance, the

user may have just connected AC to a device that was
running on battery power).

TWDE_CHECKRESOLUTION: The x/y resolution setting on the device has been
changed by the user.

TWDE_DEVICEADDED: The user has added a device (for instance a memory
card in a digital camera).

TWDE_DEVICEOFFLINE: A device has become unavailable, but has not been
removed.

TWDE_DEVICEREADY: The device is ready to capture an image.
TWDE_DEVICEREMOVED: The user has removed a device.
TWDE_IMAGECAPTURED: The user has captured an image to the device’s internal

storage.
TWDE_IMAGEDELETED: The user has removed an image from the device’s

internal storage.
TWDE_PAPERDOUBLEFEED: Two or more sheets of paper have been fed together.
TWDE_PAPERJAM: The device’s document feeder has jammed.
TWDE_LAMPFAILURE: The device’s light source has failed.
TWDE_CHECKDEVICEONLINE: The device has been turned off and on.
TWDE_POWERSAVE: The device has powered down to save energy.
TWDE_POWERSAVENOTIFY: The device is about to power down to save energy.
TWDE_CUSTOMEVENTS: Baseline for events specific to a given Source.

Application

Set all values and process the TWRC_FAILURE / TWCC_CHECKSTATUS (if returned) to
identify those items supported by the Source.

Source

The startup default must be an empty array. Generate TWRC_FAILURE /
TWCC_CHECKSTATUS and remove unsupported events when an Application requests events
not supported by the Source.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Chapter 9

9-372 TWAIN 1.9a Specification

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Please note that the actions of an Application must never directly generate a device event. For
instance, if the user deletes an image using the controls on the device, then the Source should
generate an event. If, however, an Application deletes an image in the device (using
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE), then the Source must not generate an
event.

Values

Type: TW_UINT16

Default Value: (empty array)
Allowed Values: TWDE_CHECKAUTOMATICCAPTURE 0

TWDE_CHECKBATTERY 1
TWDE_CHECKFLASH 2
TWDE_CHECKPOWERSUPPLY 3
TWDE_CHECKRESOLUTION 4
TWDE_DEVICEADDED 5
TWDE_DEVICEOFFLINE 6
TWDE_DEVICEREADY 7
TWDE_DEVICEREMOVED 8
TWDE_IMAGECAPTURED 9
TWDE_IMAGEDELETED 10
TWDE_PAPERDOUBLEFEED 11
TWDE_PAPERJAM 12
TWDE_LAMPFAILURE 13
TWDE_POWERDOWNNOTIFY 14
TWDE_CUSTOMEVENTS 0x8000

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: TW_ARRAY

Required By

None

Source Required Operations

None

See Also

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Device Events Article

 Capabilities

TWAIN 1.9a Specification 9-373

CAP_DEVICEONLINE

Description

If TRUE, the physical hardware (e.g., scanner, digital camera, image database, etc.) that
represents the image source is attached, powered on, and communicating.

Application

This capability can be issued at any time to determine the availability of the image source
hardware.

Source

The receipt of this capability request should trigger a test of the status of the physical link to the
image source. The source should not assume that the link is still active since the last
transaction, but should issue a transaction that actively tests this condition.

Values

Type: TW_BOOL

Default Value: None
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

All image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

Chapter 9

9-374 TWAIN 1.9a Specification

CAP_DEVICETIMEDATE

Description

The date and time of the device’s clock.

Managed in the form “YYYY/MM/DD HH:mm:SS:sss” where YYYY is the year, MM is the
numerical month, DD is the numerical day, HH is the hour, mm is the minute, SS is the second,
and sss is the millisecond.

Source

The internal date and time of the device. Be sure to leave the space between the ending of the
date and the beginning of the time fields. All fields must be specified for MSG_SET.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_STR32

Default Value: No Default
Allowed Values: Any date

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_TIMEDATE

 Capabilities

TWAIN 1.9a Specification 9-375

CAP_DUPLEX

Description

This indicates whether the scanner supports duplex. If so, it further indicates whether one-path
or two-path duplex is supported.

Application

Application can send MSG_GET to find out whether the scanner supports duplex.

Source

Source should determine level of duplex support returning the values accordingly.

Values

Type: TW_UINT16

Default Value: TWDX_NONE
Allowed Values: TWDX_NONE

TWDX_1PASSDUPLEX
TWDX_2PASSDUPLEX

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: Not allowed.

Required By

None

Source Required Operations

See Also

CAP_DUPLEXENABLED

Chapter 9

9-376 TWAIN 1.9a Specification

CAP_DUPLEXENABLED

Description

The user can set the duplex option to be TRUE or FALSE. If TRUE, the scanner scans both sides
of a paper; otherwise, the scanner will scan only one side of the image.

Application

Application should send MSG_GET to determine if the duplex option is enabled or not.

Source

Source should return TRUE or FALSE based on the level of duplex support; otherwise, return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

See Also

CAP_DUPLEX

 Capabilities

TWAIN 1.9a Specification 9-377

CAP_ENABLEDSUIONLY

Description

Allows an application to query a source to see if it implements the new user interface settings
dialog. If a source reports that it has the capability CAP_ENABLEDSUIONLY, then it must
implement the operation triplet DG_CONTROL/ DAT_USERINTERFACE/
MSG_ENABLEDSUIONLY to display the source user interface without acquiring an image.

If TRUE, the source will support the DG_CONTROL/ DAT_USERINTERFACE
/MSG_ENABLEDSUIONLY message.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: Set not allowed

Required By

None.

Source Required Operations

None

See Also

DG_CONTROL/DAT_USERINTERFACE/MSG_ENABLEDSUIONLY

Chapter 9

9-378 TWAIN 1.9a Specification

CAP_ENDORSER

Description

Allows the application to specify the starting endorser / imprinter number. All other endorser/
imprinter properties should be handled through the data source’s user interface.

The user can set the starting number for the endorser.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT32

Default Value: 0
Allowed Values: Any value

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

See Also

None

 Capabilities

TWAIN 1.9a Specification 9-379

CAP_EXTENDEDCAPS

Description

Allows the application and Source to negotiate capabilities to be used in States 5 and 6.

Application

MSG_GETCURRENT provides a list of all capabilities which the Source and application have
agreed to negotiate in States 5 and 6.

MSG_GET provides a list of all capabilities the Source is willing to negotiate in States 5 and 6.

MSG_SET specifies which capabilities the application wants to negotiate in States 5 and 6.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: Any xCAP_xxxx

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: TW_ARRAY

Required By

None

Source Required Operations

None

See Also

CAP_SUPPORTEDCAPS

Chapter 9

9-380 TWAIN 1.9a Specification

CAP_FEEDERALIGNMENT

Description

Helps the Application determine any special actions it may need to take when negotiating
frames with the Source.

TWFA_NONE: The alignment is free-floating. Applications should assume that the
origin for frames is on the left.

TWFA_LEFT: The alignment is to the left.
TWFA_CENTER: The alignment is centered. This means that the paper will be fed in the

middle of the ICAP_PHYSICALWIDTH of the device. If this is set,
then the Application should calculate any frames with a left offset of
zero.

TWFA_RIGHT: The alignment is to the right.

Application

The Application can use this to determine if it must center the framing information sent to the
Source. With some Sources it might be possible for the Application to select whether the paper
is center fed or not.

Source

Use this capability to report the state of the feeder.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWFA_NONE 0

TWFA_LEFT 1
TWFA_CENTER 2
TWFA_RIGHT 3

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE, if supported

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-381

CAP_FEEDERENABLED

Description

If TRUE, Source must acquire data from the document feeder acquire area and other feeder
capabilities can be used. If FALSE, Source must acquire data from the non-feeder acquire area
and no other feeder capabilities can be used.

Application

The application should MSG_SET this capability to TRUE before attempting to use any other
feeder capabilities. This sets the current acquire area to the feeder area (it may not be a
different physical area on some Sources).

The application can MSG_SET this capability to FALSE to use the Source’s non-feeder
acquisition area and disallow the further use of feeder capabilities.

Source

This setting should reflect the current acquire area:

If TRUE, feeder acquire area should be used
If FALSE, use non-feeder acquire area

Usually, the feeder acquire area and non-feeder acquire area of the Source will be the same.
For example, a flatbed scanner may feed a page onto the flatbed platen then scanning always
takes place from the platen.

The counter example is a flatbed scanner that moves the scan bar over the platen when
CAP_FEEDERENABLED is FALSE, but moves the paper over the scan bar when it is TRUE.

Default Support Guidelines for Sources

• Flatbed scanner (without an optional ADF installed) - Default to FALSE. Do not allow
setting to TRUE (return TWRC_FAILURE / TWCC_BADVALUE) but support the
capability (never return TWRC_FAILURE / TWCC_CAPUNSUPPORTED).

• A device that uses the same acquire area for feeder and non-feeder, and has a feeder
installed - Default to TRUE and allow settings to TRUE or FALSE (meaning allow or
don’t allow other feeder capabilities).

• A device that operates differently when acquiring from the feeder and non-feeder areas
(for example, physical pages sizes are different) - Default to preferred area and allow
setting to either TRUE or FALSE.

• A sheet feed scanner or image database - Default to TRUE (meaning there is only one
acquire area - the feeder area) and do not allow setting to FALSE (return
TWRC_FAILURE / TWCC_BADVALUE).

• A handheld scanner would not support this capability (return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED).

Chapter 9

9-382 TWAIN 1.9a Specification

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

All Sources with feeder devices

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERLOADED
CAP_FEEDPAGE
CAP_REWINDPAGE

 Capabilities

TWAIN 1.9a Specification 9-383

CAP_FEEDERLOADED

Description

Reflect whether there are documents loaded in the Source’s feeder.

Application

Used by application to inquire whether there are documents loaded in the Source’s feeder.

CAP_FEEDERENABLED must equal TRUE to use this capability.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED (capability is not supported in current settings).

If CAP_FEEDERENABLED equals TRUE, return the status of the feeder
(documents loaded = TRUE; no documents loaded = FALSE).

The Source is responsible for reporting instructions to users on using the device. This includes
instructing the user to place documents in the feeder when CAP_FEEDERLOADED equals
FALSE and the application has requested a feed page (manually or automatically).

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

All Sources with feeder devices

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERENABLED
CAP_FEEDPAGE
CAP_REWINDPAGE

Chapter 9

9-384 TWAIN 1.9a Specification

CAP_FEEDERORDER

Description

TWFO_FIRSTPAGEFIRST if the feeder starts with the top of the first page.
TWFO_LASTPAGEFIRST is the feeder starts with the top of the last page.

Application

An Application can use this to determine if it should reorganize the stream of images received
from a Source.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWFO_FIRSTPAGEFIRST 0

TWFO_LASTPAGEFIRST 1

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE, if supported

Required By

None

Source Required Operations

None

See Also

CAP_FEEDERENABLED

 Capabilities

TWAIN 1.9a Specification 9-385

CAP_FEEDPAGE

Description

If TRUE, the Source will eject the current page and advance the next page in the document
feeder into the feeder acquire area.

If CAP_AUTOFEED is TRUE, the same action just described will occur and CAP_AUTOFEED
will remain active.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5
and 6.

Application

Do a MSG_SET to TRUE on this capability to advance the next document in the feeder to the
feeder acquire area.

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source’s user interface).

This capability can also be used while CAP_AUTOFEED equals TRUE to abort all remaining
transfers on this page and continue with the next page.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED (capability is not supported in current settings).

If supported, advance the document in the feeder-acquire area to the output area and abort all
pending transfers from this page.

Advance the next page in the input area to the feeder acquire area. If there are no documents in
the input area, return: TWRC_FAILURE / TWCC_BADVALUE.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The
Source should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Chapter 9

9-386 TWAIN 1.9a Specification

Required By

None

Source Required Operations

None

See Also

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_EXTENDEDCAPS
CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_REWINDPAGE

 Capabilities

TWAIN 1.9a Specification 9-387

CAP_INDICATORS

Description

If TRUE, the Source will display a progress indicator during acquisition and transfer, regardless
of whether the Source’s user interface is active. If FALSE, the progress indicator will be
suppressed if the Source’s user interface is inactive.

The Source will continue to display device-specific instructions and error messages even with
the Source user interface and progress indicators turned off.

Application

If the application plans to enable the Source with TW_USERINTERFACE. ShowUI = FALSE, it
can also suppress the Source’s progress indicator by using this capability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: TRUE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Chapter 9

9-388 TWAIN 1.9a Specification

CAP_JOBCONTROL

Description

Allows multiple jobs in batch mode. The application can decide how the job can be processed,
according to the flags listed below.

TWJC_NONE No job control.
TWJC_JSIC Detect and include job separator and continue scanning.
TWJC_JSIS Detect and include job separator and stop scanning.
TWJC_JSXC Detect and exclude job separator and continue scanning.
TWJC_JSXS Detect and exclude job separator and stop scanning.

If application selects options other than none, it should check the JCL field of the new
PENDINGXFERS data.

To distinguish between jobs, a job separator sheet containing patch code can be inserted. If the
application knows the how to save different jobs, the TWJC_JSIC or TWJC_JSXC can be used.
When this job separator is detected, the application will give a separate name for each job. If
the application does not know how to save different jobs, it can use TWJC_JSIS or TWJC_JSXS
to stop scanning and ask the user for different job name.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWJC_NONE
Allowed Values: TWJC_NONE

TWJC_JSIC
TWJC_JSIS
TWJC_JSXC
TWJC_JSXS

Container for MSG_GET: TW_ONEVALUE/
TW_ENUMERATION

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

MSG_PENDINGXFER

 Capabilities

TWAIN 1.9a Specification 9-389

CAP_LANGUAGE

Description

Allows Application and Source to identify which languages they have in common for the
exchange of string data, and to select the language of the internal UI.

Note: Since the TWLG_xxxx codes include language and country data, there is no separate
capability for selecting the country.

Application

In multi-lingual environments, it is the responsibility of the Application to recall the last
selected language for a given User.

Source

The current value of this setting specifies the language used by the Source (and possibly the
device). The Source must first default to the Application’s current language. If that fails then it
must default to the User’s Locale (c.f., the Win32 call GetLocaleInfo()). If that fails then the
Source should make the best choice it can, preferably using a common secondary language (i.e.,
English, French…).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Note:

• TWLG_ARABIC_UAE is for the United Arabic Emirates.
• TWLG_CHINESE_PRC is for the People’s Republic of China

Values

Type: TW_UINT16

Default Value: In order of priority:
1) appIdentity->Version.Language
2) TWLG_USERLOCALE
3) Source’s choice

Allowed Values: TWLG_USERLOCALE -1
// pre 1.8 values…
TWLG_DAN 0
TWLG_DUT 1
TWLG_ENG 2
TWLG_FCF 3
TWLG_FIN 4
TWLG_FRN 5
TWLG_GER 6
TWLG_ICE 7

Chapter 9

9-390 TWAIN 1.9a Specification

TWLG_ITN 8
TWLG_NOR 9
TWLG_POR 10
TWLG_SPA 11
TWLG_SWE 12
TWLG_USA 13
// 1.8 should use these…
TWLG_AFRIKAANS 14
TWLG_ALBANIA 15
TWLG_ARABIC 16
TWLG_ARABIC_ALGERIA 17
TWLG_ARABIC_BAHRAIN 18
TWLG_ARABIC_EGYPT 19
TWLG_ARABIC_IRAQ 20
TWLG_ARABIC_JORDAN 21
TWLG_ARABIC_KUWAIT 22
TWLG_ARABIC_LEBANON 23
TWLG_ARABIC_LIBYA 24
TWLG_ARABIC_MOROCCO 25
TWLG_ARABIC_OMAN 26
TWLG_ARABIC_QATAR 27
TWLG_ARABIC_SAUDIARABIA 28
TWLG_ARABIC_SYRIA 29
TWLG_ARABIC_TUNISIA 30
TWLG_ARABIC_UAE 31
TWLG_ARABIC_YEMEN 32
TWLG_BASQUE 33
TWLG_BYELORUSSIAN 34
TWLG_BULGARIAN 35
TWLG_CATALAN 36
TWLG_CHINESE 37
TWLG_CHINESE_HONGKONG 38
TWLG_CHINESE_PRC 39
TWLG_CHINESE_SINGAPORE 40
TWLG_CHINESE_SIMPLIFIED 41
TWLG_CHINESE_TAIWAN 42
TWLG_CHINESE_TRADITIONAL 43
TWLG_CROATIA 44
TWLG_CZECH 45
TWLG_DANISH TWLG_DAN
TWLG_DUTCH TWLG_DUT
TWLG_DUTCH_BELGIAN 46
TWLG_ENGLISH TWLG_ENG
TWLG_ENGLISH_AUSTRALIAN 47
TWLG_ENGLISH_CANADIAN 48
TWLG_ENGLISH_IRELAND 49
TWLG_ENGLISH_NEWZEALAND 50
TWLG_ENGLISH_SOUTHAFRICA 51
TWLG_ENGLISH_UK 52
TWLG_ENGLISH_USA TWLG_USA
TWLG_ESTONIAN 53
TWLG_FAEROESE 54

 Capabilities

TWAIN 1.9a Specification 9-391

TWLG_FARSI 55
TWLG_FINNISH TWLG_FIN
TWLG_FRENCH TWLG_FRN
TWLG_FRENCH_BELGIAN 56
TWLG_FRENCH_CANADIAN TWLG_FCF
TWLG_FRENCH_LUXEMBOURG 57
TWLG_FRENCH_SWISS 58
TWLG_GERMAN TWLG_GER
TWLG_GERMAN_AUSTRIAN 59
TWLG_GERMAN_LUXEMBOURG 60
TWLG_GERMAN_LIECHTENSTEIN 61
TWLG_GERMAN_SWISS 62
TWLG_GREEK 63
TWLG_HEBREW 64
TWLG_HUNGARIAN 65
TWLG_ICELANDIC TWLG_ICE
TWLG_INDONESIAN 66
TWLG_ITALIAN TWLG_ITN
TWLG_ITALIAN_SWISS 67
TWLG_JAPANESE 68
TWLG_KOREAN 69
TWLG_KOREAN_JOHAB 70
TWLG_LATVIAN 71
TWLG_LITHUANIAN 72
TWLG_NORWEGIAN TWLG_NOR
TWLG_NORWEGIAN_BOKMAL 73
TWLG_NORWEGIAN_NYNORSK 74
TWLG_POLISH 75
TWLG_PORTUGUESE TWLG_POR
TWLG_PORTUGUESE_BRAZIL 76
TWLG_ROMANIAN 77
TWLG_RUSSIAN 78
TWLG_SERBIAN_LATIN 79
TWLG_SLOVAK 80
TWLG_SLOVENIAN 81
TWLG_SPANISH TWLG_SPA
TWLG_SPANISH_MEXICAN 82
TWLG_SPANISH_MODERN 83
TWLG_SWEDISH TWLG_SWE
TWLG_THAI 84
TWLG_TURKISH 85
TWLG_UKRANIAN 86
TWLG_ASSAMESE 87
TWLG_BENGALI 88
TWLG_BIHARI 89
TWLG_BODO 90
TWLG_DOGRI 91
TWLG_GUJARATI 92
TWLG_HARYANVI 93
TWLG_HINDI 94
TWLG_KANNADA 95
TWLG_KASHMIRI 96

Chapter 9

9-392 TWAIN 1.9a Specification

TWLG_MALAYALAM 97
TWLG_MARATHI 98
TWLG_MARWARI 99
TWLG_MEGHALAYAN 100
TWLG_MIZO 101
TWLG_NAGA 102
TWLG_ORISSI 103
TWLG_PUNJABI 104
TWLG_PUSHTU 105
TWLG_SERBIAN_CYRILLIC 106
TWLG_SIKKIMI 107
TWLG_SWEDISH_FINLAND 108
TWLG_TAMIL 109
TWLG_TELUGU 110
TWLG_TRIPURI 111
TWLG_URDU 112
TWLG_VIETNAMESE 113

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-393

CAP_MAXBATCHBUFFERS

Description

Describes the number of pages that the scanner can buffer when CAP_AUTOSCAN is enabled.

Application

MSG_GET returns the supported values

MSG_SET sets the current number pages to be buffered (if the Source allows this to be set)

Source

If supported, report the maximum batch buffer settings during MSG_GET. If MSG_SET is
supported, limit batch buffers to the requested value for future transfers.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ONEVALUE
TW_ENUMERATION
TW_RANGE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_AUTOSCAN
CAP_CLEARBUFFERS

Chapter 9

9-394 TWAIN 1.9a Specification

CAP_PAPERDETECTABLE

Description

This capability determines whether the device has a paper sensor that can detect documents on
the ADF or Flatbed.

Application

If the source returns FALSE, the application should not rely on values such as
CAP_FEEDERLOADED, and continue as if the paper is loaded.

Source

If supported, the source is responsible for detecting whether document is loaded or not.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL/DAT_CAPABILITY/MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: TRUE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

CAP_FEEDERLOADED

 Capabilities

TWAIN 1.9a Specification 9-395

CAP_POWERSAVETIME

Description

When used with MSG_SET, set the camera power down timer in seconds. When used with
MSG_GET, return the current setting of the power down time.

Application

Use this capability with MSG_SET to set the user selected camera power down time, when no
activity is detected by the camera. The default value of -1 means no power down, power is
always on.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: -1
Allowed Values: >= -1

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None. Highly recommended for digital cameras. MSG_GET, MSG_SET, MSG_RESET

Source Required Operations

See Also

Chapter 9

9-396 TWAIN 1.9a Specification

CAP_POWERSUPPLY

Description

MSG_GET reports the kinds of power available to the device. MSG_GETCURRENT reports the
current power supply in use.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No default
Allowed Values: TWPS_EXTERNAL

TWPS_BATTERY

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-397

CAP_PRINTER

Description

MSG_GET returns the current list of available printer devices, along with the one currently
being used for negotiation. MSG_SET selects the current device for negotiation, and optionally
constrains the list. MSG_RESET restores all the available devices (useful after MSG_SET has
been used to constrain the list).

Top/Bottom refer to duplex devices, and indicate if the printer is writing on the top or the
bottom of the sheet of paper. Simplex devices use the top settings.

Before/After indicates whether printing occurs before or after the sheet of paper has been
scanned.

Application

Use this capability to determine which printers are available for negotiation, and to select a
specific printer prior to negotiation.

Source

Imprinters are used to print data on documents at the time of scanning, and may be used for
any purpose. Endorsers are more specific in nature, stamping some kind of proof of scanning
on the document. Applications may opt to use imprinters for endorsing documents.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPR_IMPRINTERTOPBEFORE 0

TWPR_IMPRINTERTOPAFTER 1
TWPR_IMPRINTERBOTTOMBEFORE 2
TWPR_IMPRINTERBOTTOMAFTER 3
TWPR_ENDORSERTOPBEFORE 4
TWPR_ENDORSERTOPAFTER 5
TWPR_ENDORSERBOTTOMBEFORE 6
TWPR_ENDORSERBOTTOMAFTER 7

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Chapter 9

9-398 TWAIN 1.9a Specification

Required By

None

Source Required Operations

None

See Also

CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX

 Capabilities

TWAIN 1.9a Specification 9-399

CAP_PRINTERENABLED

Description

Turns the current CAP_PRINTER device on or off.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_PRINTER
CAP_PRINTERINDEX
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX

Chapter 9

9-400 TWAIN 1.9a Specification

CAP_PRINTERINDEX

Description

The User can set the starting number for the current CAP_PRINTER device.

Source

This value allows the user to set the starting page number for the current CAP_PRINTER
device.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: 0
Allowed Values: Any values.

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

See Also

CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX

 Capabilities

TWAIN 1.9a Specification 9-401

CAP_PRINTERMODE

Description

Specifies the appropriate current CAP_PRINTER device mode.

Note:

• TWPM_SINGLESTRING specifies that the printed text will consist of a single string.
• TWPM _MULTISTRING specifies that the printed text will consist of an enumerated list

of strings to be printed in order.
• TWPM _COMPOUNDSTRING specifies that the printed string will consist of a

compound of a String followed by a value followed by a suffix string.

Application

Negotiate this capability to specify the mode of printing to use when the current
CAP_PRINTER device is enabled.

Source

If supported, use the specified mode for future image acquisitions.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWPM_SINGLESTRING
Allowed Values: TWPM_SINGLESTRING

TWPM_MULTISTRING
TWPM_COMPOUNDSTRING

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Chapter 9

9-402 TWAIN 1.9a Specification

Source Required Operations

None

See Also

CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX

 Capabilities

TWAIN 1.9a Specification 9-403

CAP_PRINTERSTRING

Description

Specifies the string(s) that are to be used in the string component when the current
CAP_PRINTER device is enabled.

Application

Negotiate this capability to specify the string or strings to be used for printing (depending on
printer mode). Use enumeration to print multiple lines of text, one line per string in the
enumerated list. Be sure to check the status codes if attempting multiple lines, since not all
devices support this feature.

Source

If supported, use the specified string for printing during future acquisitions.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_STR255

Default Value: No Default
Allowed Values: Any string

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERMODE
CAP_PRINTERSUFFIX

Chapter 9

9-404 TWAIN 1.9a Specification

CAP_PRINTERSUFFIX

Description

Specifies the string that shall be used as the current CAP_PRINTER device’s suffix.

Application

Negotiate this capability to specify the string that is used as the suffix for printing if
TWPM_COMPOUNDSTRING is used.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_STR255

Default Value: No Default
Allowed Values: Any string

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERMODE
CAP_PRINTERSTRING

 Capabilities

TWAIN 1.9a Specification 9-405

CAP_REACQUIREDALLOWED

Description

Indicates whether the physical hardware (e.g. scanner, digital camera) is capable of acquiring
multiple images of the same page without changes to the physical registration of that page.

Application

Use this capability to enable or disable modes of operation where multiple image acquisitions
of the page are required. Examples: preview mode, automated image analysis mode.

Source

If supported, return TRUE if the device is capable of capturing the page image multiple times
without refeeding the page or otherwise causing physical registration changes. Return FALSE
otherwise.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL/DAT_CAPABILITY/MSG_QUERYSUPPORT)

Support Guidelines for Sources

• A flat bed scanner that can retain the page on the platen and moves the scan bar past the
page would return TRUE.

• A sheet-fed scanner that physically moves the page past the scan bar would return
FALSE.

• A hand held scanner would return FALSE.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERENABLED
CAP_FEEDPAGE
CAP_REWINDPAGE

Chapter 9

9-406 TWAIN 1.9a Specification

CAP_REWINDPAGE

Description

If TRUE, the Source will return the current page to the input side of the document feeder and
feed the last page from the output side of the feeder back into the acquisition area.

If CAP_AUTOFEED is TRUE, automatic feeding will continue after all negotiated frames from
this page are acquired.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5
and 6.

Application

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source’s user interface).

If CAP_AUTOFEED is TRUE, the normal automatic feeding will continue after all frames of
this page are acquired.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED (capability is not supported in current settings).

If there are no documents in the output area, return: TWRC_FAILURE / TWCC_BADVALUE.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The
Source should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

 Capabilities

TWAIN 1.9a Specification 9-407

Source Required Operations

None

See Also

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_EXTENDEDCAPS
CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_FEEDPAGE

Chapter 9

9-408 TWAIN 1.9a Specification

CAP_SEGMENTED

Description

Describes whether or not to segment the image. Image segmentation occurs when either the
device or the Source breaks up an image into a stream of image pieces (text, pictures, graphics)
that will need to be reassembled by the application to reconstruct the original document.
Applications must use the DAT_EXTIMAGEINFO TWEI_SEGMENTNUMBER field to identify
pieces of an image that are associated with each other through segmentation.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWSG_DISABLED

Allowed Values: TWSG_DISABLED 0
TWSG_AUTO 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DAT_EXTIMAGEINFO (TWEI_SEGMENTNUMBER)

 Capabilities

TWAIN 1.9a Specification 9-409

CAP_SERIALNUMBER

Description

A string containing the serial number of the currently selected device in the Source. Multiple
devices may all report the same serial number.

Application

The value is device specific, Applications should not attempt to parse the information.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_STR255

Default Value: No default
Allowed Values: Any value

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

Chapter 9

9-410 TWAIN 1.9a Specification

CAP_SUPPORTEDCAPS

Description

Returns a list of all the capabilities for which the Source will answer inquiries. Does not
indicate which capabilities the Source will allow to be set by the application. Some capabilities
can only be set if certain setup work has been done so the Source cannot globally answer which
capabilities are “set-able.”

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: Any “get-able” capability

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: MSG_SET not allowed

Required By

All Sources.

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

CAP_EXTENDEDCAPS

 Capabilities

TWAIN 1.9a Specification 9-411

CAP_TIMEBEFOREFIRSTCAPTURE

Description

For automatic capture, this value selects the number of milliseconds before the first picture is to
be taken, or the first image is to be scanned.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: 0
Allowed Values: 0 or greater

Container for MSG_GET: TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ONEVALUE,
TW_RANGE

Required By

None

Source Required Operations

None

See Also

CAP_AUTOMATICCAPTURE
CAP_TIMEBETWEENCAPTURES
CAP_XFERCOUNT

Chapter 9

9-412 TWAIN 1.9a Specification

CAP_TIMEBETWEENCAPTURES

Description

For automatic capture, this value selects the milliseconds to wait between pictures taken, or
images scanned.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: 0
Allowed Values: 0 or greater

Container for MSG_GET: TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ONEVALUE,
TW_RANGE

Required By

None

Source Required Operations

None

See Also

CAP_AUTOMATICCAPTURE
CAP_TIMEBEFOREFIRSTCAPTURE
CAP_XFERCOUNT

 Capabilities

TWAIN 1.9a Specification 9-413

CAP_TIMEDATE

Description

The date and time the image was acquired.

Note: CAP_TIMEDATE does not return the exact time the image was acquired; rather, it
returns the closest available approximation of the time the physical phenomena
represented by the image was recorded. If the application needs the exact time of
acquisition, the application should generate that value itself during the image
acquisition procedure.

Stored in the form “YYYY/MM/DD HH:mm:SS.sss” where YYYY is the year, MM is the
numerical month, DD is the numerical day, HH is the hour, mm is the minute, SS is the second,
and sss is the millisecond.

This capability must be negotiated during State 7 before the call to the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER triplet. It must also be listed in the
CAP_EXTENDEDCAPS capability by the data source.

Source

The time and date when the image was originally acquired (when the Source entered State 7).

Be sure to leave the space between the ending of the date and beginning of the time fields. Pad
the unused characters after the string with zeros.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR32

Default Value: No Default
Allowed Values: Any date

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

CAP_AUTHOR
CAP_CAPTION

Chapter 9

9-414 TWAIN 1.9a Specification

CAP_THUMBNAILSENABLED

Description

Allows an application to request the delivery of thumbnail representations for the set of images
that are to be delivered.

Setting CAP_THUMBNAILSENABLED to TRUE turns on thumbnail mode. Images transferred
thereafter will be sent at thumbnail size (exact thumbnail size is determined by the Data
Source). Setting this capability to FALSE turns thumbnail mode off and returns full size
images.

Application

A successful set of this capability to TRUE will cause the Source to deliver image thumbnails
during normal data transfer operations. This mode remains in effect until this capability is set
back to FALSE.

Source

A successful set of this capability to TRUE should enable the delivery of thumbnail images
during normal data transfer. Setting this capability to FALSE will disable thumbnail delivery.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE (do not deliver thumbnails).
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

All Image Store Data Sources.

Source Required Operations

MSG_GET, MSG_SET, MSG_GETCURRENT, MSG_RESET

See Also

ICAP_IMAGEDATASET

 Capabilities

TWAIN 1.9a Specification 9-415

CAP_UICONTROLLABLE

Description

If TRUE, indicates that this Source supports acquisition with the UI disabled; i.e.,
TW_USERINTERFACE’s ShowUI field can be set to FALSE. If FALSE, indicates that this Source
can only support acquisition with the UI enabled.

Source

This capability was introduced in TWAIN 1.6. All Sources compliant with TWAIN 1.6 and
above must support this capability. Sources that are not TWAIN 1.6-compliant may return
TWRC_FAILURE / TWCC_BADCAP if they do not support this capability.

Application

A return value of TWRC_FAILURE / TWCC_CAPUNSUPPORTED indicates that the Source in
use is not TWAIN 1.6-compliant. Therefore, the Source may ignore TW_USERINTERFACE’s
ShowUI field when MSG_ENABLEDS is issued. See the description of DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS for more details.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

All Sources.

See Also

CAP_INDICATORS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Chapter 9

9-416 TWAIN 1.9a Specification

CAP_XFERCOUNT

Description

The application is willing to accept this number of images.

Application

Set this capability to the number of images you are willing to transfer per session. Common
values are:

1 Application wishes to transfer only one image this session
-1 Application is willing to transfer multiple images

Source

If the application limits the number of images it is willing to receive, the Source should not
make more transfers available than the specified number.

Values

Type: TW_INT16

Default Value: -1
Allowed Values: -1 to 215

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

All Sources and applications

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

TW_PENDINGXFERS.Count

 Capabilities

TWAIN 1.9a Specification 9-417

ICAP_AUTOMATICBORDERDETECTION

Description

Turns automatic border detection on and off.

Application

Negotiate this capability to determine the state of the AutoBorder detection.

ICAP_UNDEFINEDIMAGESIZE must be enabled for this feature to work.

Source

If supported, enable or disable automatic border detection according to the value specified.
Default to FALSE for backward compatibility. For this capability to be enabled,
ICAP_UNDEFINEDIMAGESIZE must be enabled.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL/DAT_CAPABILITY/MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_UNDEFINEDIMAGESIZE
ICAP_AUTOMATICDESKEW

Chapter 9

9-418 TWAIN 1.9a Specification

ICAP_AUTOBRIGHT

Description

TRUE enables and FALSE disables the Source’s Auto-brightness function (if any).

Source

If TRUE, apply auto-brightness function to acquired image before transfer.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_BRIGHTNESS

 Capabilities

TWAIN 1.9a Specification 9-419

ICAP_AUTODISCARDBLANKPAGES

Description

Use this capability to have the Source discard blank images. The Application never sees these
images during the scanning session.

TWBP_DISABLE – this must be the default state for the Source. It indicates that all images will
be delivered to the Application, none of them will be discarded.

TWBP_AUTO – if this is used, then the Source will decide if an image is blank or not and
discard as appropriate.

If the specified value is a positive number in the range 0 to 231–1, then this capability will use it
as the byte size cutoff point to identify which images are to be discarded. If the size of the
image is less than or equal to this value, then it will be discarded. If the size of the image is
greater than this value, then it will be kept so that it can be transferred to the Application.

Application

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT32

Default Value: TW_DISABLE
Allowed Values: TWBP_DISABLE -2

TWBP_AUTO -1
Byte count 0 to 231-1

Container for MSG_GET: TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ONEVALUE,
TW_RANGE

Required By

None

Source Required Operations

None

See Also

DAT_EXTIMAGEINFO

Chapter 9

9-420 TWAIN 1.9a Specification

ICAP_AUTOMATICDESKEW

Description

Turns automatic deskew correction on and off.

Application

Negotiate this capability to enable or disable Automatic deskew.

Source

If supported, enable or disable the Automatic deskew feature according to the value specified
for future transfers. Default to FALSE for backward compatibility. Some Sources may require
ICAP_UNDEFINEDIMAGESIZE to be enabled.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL/DAT_CAPABILITY/MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_AUTOMATICBORDERDETECTION
ICAP_AUTOMATICROTATE
ICAP_UNDEFINEDIMAGESIZE

 Capabilities

TWAIN 1.9a Specification 9-421

ICAP_AUTOMATICROTATE

Description

When TRUE this capability depends on intelligent features within the Source to automatically
rotate the image to the correct position.

Application

If this capability is set to TRUE, then it must be assumed that no other correction is required
(deskew, rotation, etc…); the Source is guaranteeing that it will deliver images in the correct
orientation.

Source

There are no criteria for how this automatic rotation is determined. A Source may use a field of
text, or some distinguishing non-text field, such as a barcode or a logo, or it may rely on form
recognition to help rotate the document.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_AUTOMATICDESKEW
ICAP_ORIENTATION
ICAP_ROTATION

Chapter 9

9-422 TWAIN 1.9a Specification

ICAP_BARCODEDETECTIONENABLED

Description

Turns bar code detection on and off.

Source

Support this capability if the scanner supports any Bar code recognition. If the device allows
this feature to be turned off, then default to off. If the device does not support disabling this
feature, report TRUE and disallow attempts to set FALSE.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-423

ICAP_BARCODEMAXRETRIES

Description

Restricts the number of times a search will be retried if none are found on each page.

Application

Refine this capability to limit the number of times the bar code search algorithm is retried on a
page that contains no bar codes.

Source

If supported, limit the number of retries the value specified.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODETIMEOUT

Chapter 9

9-424 TWAIN 1.9a Specification

ICAP_BARCODEMAXSEARCHPRIORITIES

Description

The maximum number of supported search priorities.

Application

Query this value to determine how many bar code detection priorities can be set.

Set this value to limit the number of priorities to speed the detection process.

Source

If bar code searches can be prioritized, report the maximum number of priorities allowed for a
search.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-425

ICAP_BARCODESEARCHMODE

Description

Restricts bar code searching to certain orientations, or prioritizes one orientation over the other.

Application

Negotiate this capability if the orientation of bar codes is already known to the application.
Refinement of this capability can speed the bar code search.

Source

If set then apply the specified refinements to future bar code searches.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWBD_HORZ 0

TWBD_VERT 1
TWBD_HORZVERT 2
TWBD_VERTHORZ 3

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

Chapter 9

9-426 TWAIN 1.9a Specification

ICAP_BARCODESEARCHPRIORITIES

Description

A prioritized list of bar code types dictating the order in which bar codes will be sought.

Application

Set this capability to specify the order and priority for bar code searching. Refining the
priorities to only the bar code types of interest to the application can speed the search process.

Source

If this type of search refinement is supported, then report the current values.

If set, then limit future searches to the specified bar codes in the specified priority order.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWBT_3OF9 0

TWBT_2OF5INTERLEAVED 1
TWBT_2OF5NONINTERLEAVED 2
TWBT_CODE93 3
TWBT_CODE128 4
TWBT_UCC128 5
TWBT_CODABAR 6
TWBT_UPCA 7
TWBT_UPCE 8
TWBT_EAN8 9
TWBT_EAN13 10
TWBT_POSTNET 11
TWBT_PDF417 12
TWBT_2OF5INDUSTRIAL 13
TWBT_2OF5MATRIX 14
TWBT_2OF5DATALOGIC 15
TWBT_2OF5IATA 16
TWBT_3OF9FULLASCII 17
TWBT_CODABARWITHSTARTSTOP 18
TWBT_MAXICODE 19

Container for MSG_GET: TW_ ARRAY
Container for MSG_SET: TW_ ARRAY

 Capabilities

TWAIN 1.9a Specification 9-427

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

Chapter 9

9-428 TWAIN 1.9a Specification

ICAP_BARCODETIMEOUT

Description

Restricts the total time spent on searching for a bar code on each page.

Application

Refine this value to tune the length of time the search algorithm is allowed to execute before
giving up.

Source

If supported, limit the duration of a bar code search to the value specified.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT).

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES

 Capabilities

TWAIN 1.9a Specification 9-429

ICAP_BITDEPTH

Description

Specifies the pixel bit depths for the Current value of ICAP_PIXELTYPE. For example, when
using ICAP_PIXELTYPE = TWPT_GRAY, this capability specifies whether this is 8-bit gray or
4-bit gray.

This depth applies to all the data channels (for instance, the R, G, and B channels will all have
this same bit depth for RGB data).

Application

The application should loop through all the ICAP_PIXELTYPEs it is interested in and negotiate
the ICAP_BITDEPTH(s) for each.

For all allowed settings of ICAP_PIXELTYPE

• Set ICAP_PIXELTYPE
• Set ICAP_BITDEPTH for the current ICAP_PIXELTYPE

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If the bit depth in a MSG_SET is not supported for the current ICAP_PIXELTYPE setting, return
TWRC_FAILURE / TWCC_BADVALUE.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: >=1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

ICAP_PIXELTYPE

Chapter 9

9-430 TWAIN 1.9a Specification

ICAP_BITDEPTHREDUCTION

Description

Specifies the Reduction Method the Source should use to reduce the bit depth of the data. Most
commonly used with ICAP_PIXELTYPE = TWPT_BW to reduce gray data to black and white.

Application

Set the capability to the reduction method to be used in future acquisitions

Also select the Halftone or Threshold to be used.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWBR_THRESHOLD 0

TWBR_HALFTONES 1
TWBR_CUSTHALFTONE 2
TWBR_DIFFUSION 3

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_CUSTHALFTONE
ICAP_HALFTONES
ICAP_PIXELTYPE
ICAP_THRESHOLD

 Capabilities

TWAIN 1.9a Specification 9-431

ICAP_BITORDER

Description

Specifies how the bytes in an image are filled by the Source. TWBO_MSBFIRST indicates that
the leftmost bit in the byte (usually bit 7) is the byte’s Most Significant Bit.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWBO_MSBFIRST
Allowed Values: TWBO_LSBFIRST 0

TWBO_MSBFIRST 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

ICAP_BITORDERCODES

Chapter 9

9-432 TWAIN 1.9a Specification

ICAP_BITORDERCODES

Description

Used for CCITT data compression only. Indicates the bit order representation of the stored
compressed codes.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWBO_LSBFIRST
Allowed Values: TWBO_LSBFIRST 0

TWBO_MSBFIRST 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_COMPRESSION

 Capabilities

TWAIN 1.9a Specification 9-433

ICAP_BRIGHTNESS

Description

The brightness values available within the Source.

Application

The application can use this capability to inquire, set, or restrict the values for BRIGHTNESS
used in the Source.

Source

Source should normalize the values into the range. Make sure that a ‘0’ value is available as the
Current Value when the Source starts up. If the Source’s ± range is asymmetric about the ‘0’
value, set range maxima to ±1000 and scale homogeneously from the ‘0’ value in each direction.
This will yield a positive range whose step size differs from the negative range’s step size.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 0
Allowed Values: -1000 to +1000

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_AUTOBRIGHT
ICAP_CONTRAST

Chapter 9

9-434 TWAIN 1.9a Specification

ICAP_CCITTKFACTOR

Description

Used for CCITT Group 3 2-dimensional compression. The ‘K’ factor indicates how often the
new compression baseline should be re-established. A value of 2 or 4 is common in facsimile
communication. A value of zero in this field will indicate an infinite K factor—the baseline is
only calculated at the beginning of the transfer.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values:

Type: TW_UINT16

Default Value: 4
Allowed Values: 0 to 216

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_COMPRESSION

 Capabilities

TWAIN 1.9a Specification 9-435

ICAP_COMPRESSION

Description

Allows the application and Source to identify which compression schemes they have in
common for Buffered Memory and File transfers.

Note for File transfers:

Since only certain file formats support compression, this capability must be negotiated after
setting the desired file format with ICAP_IMAGEFILEFORMAT.

TWCP_NONE All Sources must support this.

TWCP_PACKBITS Macintosh PackBits format, (can be used with TIFF or PICT)

TWCP_GROUP31D,
TWCP_GROUP31DEOL,
TWCP_GROUP32D,
TWCP_GROUP4 Are all from the CCITT specification (now ITU), intended for document

images (can be used with TIFF).

TWCP_JPEG Intended for the compression of color photographs (can be used with
TIFF, JFIF or SPIFF).

TWCP_LZW A compression licensed by UNISYS (can be used with TIFF).

TWCP_JBIG Intended for bitonal and grayscale document images (can be used with
TIFF or SPIFF).

TWCP_PNG This compression can only be used if ICAP_IMAGEFILEFORMAT is set
to TWFF_PNG.

TWCP_RLE4,
TWCP_RLE8,
TWCP_BITFIELDS These compressions can only be used if ICAP_IMAGEFILEFORMAT is

set to TWFF_BMP.

Application

Applications must not assume that a Source can provide compressed Buffered Memory or File
transfers, because many cannot. The application should use MSG_SET on a TW_ONEVALUE
container to specify the compression type for future transfers.

Source

The current value of this setting specifies the compression method to be used in future
transfers. If the image transfer mechanism is changed, then the allowed list must be modified
to reflect the supported values. If the current value is not available on the new allowed list,
then the Source must change it to its preferred value.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Chapter 9

9-436 TWAIN 1.9a Specification

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWCP_NONE
Allowed Values: TWCP_NONE 0

TWCP_PACKBITS 1
TWCP_GROUP31D 2
TWCP_GROUP31DEOL 3
TWCP_GROUP32D 4
TWCP_GROUP4 5
TWCP_JPEG 6
TWCP_LZW 7
TWCP_JBIG 8
TWCP_PNG 9
TWCP_RLE4 10
TWCP_RLE8 11
TWCP_BITFIELDS 12

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

All Image Sources.

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

DG_CONTROL / DAT_IMAGEMEMXFER / MSG_GET
DG_CONTROL / DAT_IMAGEFILEXFER / MSG_GET

CAP_XFERMECH
ICAP_IMAGEFILEFORMAT

 Capabilities

TWAIN 1.9a Specification 9-437

ICAP_CONTRAST

Description

The contrast values available within the Source.

Application

The application can use this capability to inquire, set or restrict the values for CONTRAST used
in the Source.

Source

Scale the values available internally into a homogeneous range between -1000 and 1000. Make
sure that a ‘0’ value is available as the Current value when the Source starts up. If the Source’s
± range is asymmetric about the ‘0’ value, set range maxima to ±1000 and scale homogeneously
from the ‘0’ value in each direction. This will yield a positive range whose step size differs
from the negative range’s step size.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 0
Allowed Values: -1000 to +1000

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_BRIGHTNESS

Chapter 9

9-438 TWAIN 1.9a Specification

ICAP_CUSTHALFTONE

Description

Specifies the square-cell halftone (dithering) matrix the Source should use to halftone the
image.

Application

The application should also set ICAP_BITDEPTHREDUCTION to TWBR_CUSTHALFTONE to
use this capability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT8

Default Value: No Default
Allowed Values: Any rectangular array

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: TW_ARRAY

Required By

None

Source Required Operations

None

See Also

ICAP_BITDEPTHREDUCTION

 Capabilities

TWAIN 1.9a Specification 9-439

ICAP_EXPOSURETIME

Description

Specifies the exposure time used to capture the image, in seconds.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: >0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE

Chapter 9

9-440 TWAIN 1.9a Specification

ICAP_EXTIMAGEINFO

Description

Allows the application to query the data source to see if it supports the new operation triplet
DG_IMAGE/ DAT_EXTIMAGEINFO/ MSG_GET.

If TRUE, the source will support the DG_IMAGE/DAT_EXTIMAGEINFO/MSG_GET message.

Note: The TWAIN API allows for an application to query the results of many advanced
device/manufacturer operations. The responsibility of configuring and setting up
each advanced operation lies with the device’s data source user interface. Since the
configuration of advanced device/manufacturer-specific operations varies from
manufacturer to manufacturer, placing the responsibility for setup and configuration
of advanced operations allows the application to remain device independent.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DG_IMAGE/
DAT_EXTIMAGEINFO/
MSG_GET

 Capabilities

TWAIN 1.9a Specification 9-441

ICAP_FILTER

Description

Describes the color characteristic of the subtractive filter applied to the image data. Multiple
filters may be applied to a single acquisition.

Source

If the Source only supports application of a single filter during an acquisition and multiple
filters are specified by the application, set the current filter to the first one requested and return
TWRC_CHECKSTATUS.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWFT_RED 0

TWFT_GREEN 1
TWFT_BLUE 2
TWFT_NONE 3
TWFT_WHITE 4
TWFT_CYAN 5
TWFT_MAGENTA 6
TWFT_YELLOW 7
TWFT_BLACK 8

Container for MSG_GET: TW_ARRAY
TW_ONEVALUE

Container for MSG_SET: TW_ARRAY
TW_ONEVALUE

Required By

None

Source Required Operations

None

Chapter 9

9-442 TWAIN 1.9a Specification

ICAP_FLASHUSED

Description

Specifies whether or not the image was acquired using a flash.

Application

Note that an image with flash may have a different color composition than an image without
flash.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE

 Capabilities

TWAIN 1.9a Specification 9-443

ICAP_FLASHUSED2

Description

For devices that support flash. MSG_SET selects the flash to be used (if any). MSG_GET
reports the current setting. This capability replaces ICAP_FLASHUSED, which is only able to
negotiate the flash being on or off.

Application

Note that an image with flash may have a different color composition than an image without
flash.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWFL_NONE
Allowed Values: TWFL_NONE 0

TWFL_OFF 1
TWFL_ON 2
TWFL_AUTO 3
TWFL_REDEYE 4

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_FLASHUSED

Chapter 9

9-444 TWAIN 1.9a Specification

ICAP_FLIPROTATION

Description

Flip rotation is used to properly orient images that flip orientation every other image.

TWFR_BOOK The images to be scanned are viewed in book form, flipping each page
from left to right or right to left.

A B BADirection of scan

TWFR_FANFOLD The images to be scanned are viewed in fanfold paper style, flipping
each page up or down.

B

AA

B

Direction of scan

On duplex paper, the As are all located on the top, and the Bs are all located on the bottom. If
ICAP_FLIPROTATION is set to TWFR_BOOK, and fanfold paper is scanned, then every B
image will be upside down. Setting the capability to TWFR_FANFOLD instructs the Source to
rotate the B images 180 degrees around the x-axis.

Because this capability is described to act upon every other image, it will work correctly in
simplex mode, assuming that every other simplex image is flipped in the manner described
above.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWFR_BOOK
Allowed Values: TWFR_BOOK 0

TWFR_FANFOLD 1

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

 Capabilities

TWAIN 1.9a Specification 9-445

Required By

None

Source Required Operations

None

Chapter 9

9-446 TWAIN 1.9a Specification

ICAP_FRAMES

Description

The list of frames the Source will acquire on each page.

Application

MSG_GET returns the size and location of all the frames the Source will acquire image data
from when acquiring from each page.

MSG_GETCURRENT returns the size and location of the next frame to be acquired.

MSG_SET allows the application to specify the frames and their locations to be used to acquire
from future pages.

This ICAP is most useful if the Source supports simultaneous acquisition from multiple frames.
Use ICAP_MAXFRAMES to establish this ability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FRAME

Default Value: No Default
Allowed Values: Device dependent

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_MAXFRAMES
ICAP_SUPPORTEDSIZES
TW_IMAGELAYOUT

 Capabilities

TWAIN 1.9a Specification 9-447

ICAP_GAMMA

Description

Gamma correction value for the image data.

Application

Do not use with TW_CIECOLOR, TW_GRAYRESPONSE, or TW_RGBRESPONSE data.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 2.2
Allowed Values: Any value

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

Chapter 9

9-448 TWAIN 1.9a Specification

ICAP_HALFTONES

Description

A list of names of the halftone patterns available within the Source.

Application

The application may not rename any halftone pattern.

The application should also set ICAP_BITDEPTHREDUCTION to use this capability.

Values

Type: TW_STR32

Default Value: No Default
Allowed Values: Any halftone name

Container for MSG_GET: TW_ARRAY (for backwards compatibility with 1.0 only)
TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ARRAY (for backwards compatibility with 1.0 only)
TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_CUSTHALFTONE
ICAP_BITDEPTHREDUCTION
ICAP_THRESHOLD

 Capabilities

TWAIN 1.9a Specification 9-449

ICAP_HIGHLIGHT

Description

Specifies which value in an image should be interpreted as the lightest “highlight.” All values
“lighter” than this value will be clipped to this value. Whether lighter values are smaller or
larger can be determined by examining the Current value of ICAP_PIXELFLAVOR.

Source

If more or less than 8 bits are used to describe the image, the actual data values should be
normalized to fit within the 0-255 range. The normalization need not result in a homogeneous
distribution if the original distribution was not homogeneous.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 255
Allowed Values: 0 to 255

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_SHADOW

Chapter 9

9-450 TWAIN 1.9a Specification

ICAP_IMAGEDATASET

Description

Gets or sets the image indices that will be delivered during the standard image transfer done in
States 6 and 7. Indices are assumed to start at 1, so a TW_ONEVALUE container sets an
implied range from 1 to the number specified. TW_RANGE returns are useful for those cases
where the images are contiguous (5 .. 36). TW_ARRAY returns should be used were index
values are discontinuous (as could be the case where the user previously set such a data set).
See the note in the Values section below.

Application

A MSG_RESET operation should always be done before a MSG_GET if the application wishes
to get the complete list of available images. A MSG_SET operation will define the number and
order of images delivered during States 6 and 7.

Source

For MSG_GET, if a contiguous range of images are available starting from the first index
(e.g., 1 .. 36) it is recommended that the TW_ONEVALUE container is used specifying just the
total number of available images (e.g., 36).

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT32

Default Value: Entire range or set of available images
Allowed Values: 0 to 232 -1 (for MSG_GET)

1 to 232 -1 (for MSG_SET)

Container for MSG_GET: TW_ONEVALUE
TW_RANGE (see note below)
TW_ARRAY (see note below)

Container for MSG_SET: TW_ONEVALUE
TW_RANGE
TW_ARRAY

 Capabilities

TWAIN 1.9a Specification 9-451

Note: These container types are supported for the returning discontinuous indices that have
been previously set by the application. It is highly recommended that for a initialized
or reset Image Store device, the TW_ONEVALUE container be the only one returned
by the MSG_GET operation. In other words, the data source should not expose the
details of the internal memory management of the Image Store device by claiming that
it has a hole in its storage locations due to user deletions. For example, a camera that
currently has data for pictures 1 to 10 should report that it has 10 images available. If
the user later deletes pictures 5, 7, and 9, it should now report that it has 7 images
available (i.e., 1 to 7), and not claim that it has pictures 1, 2, 3, 4, 6, 8, and 10 available.
To do so would expose the internal memory management constraints of the device
and serves little use but to confuse the user.

Required By

All Image Store Data Sources.

Source Required Operations

MSG_GET, MSG_SET, MSG_RESET

Chapter 9

9-452 TWAIN 1.9a Specification

ICAP_IMAGEFILEFORMAT

Description

Informs the application which file formats the Source can generate (MSG_GET). Tells the
Source which file formats the application can handle (MSG_SET).

TWFF_TIFF Used for document imaging
TWFF_PICT Native Macintosh format
TWFF_BMP Native Microsoft format
TWFF_XBM Used for document imaging
TWFF_JFIF Wrapper for JPEG images
TWFF_FPX FlashPix, used with digital cameras
TWFF_TIFFMULTI Multi-page TIFF files
TWFF_PNG An image format standard intended

for use on the web, replaces GIF
TWFF_SPIFF A standard from JPEG, intended to replace JFIF, also supports

JBIG
TWFF_EXIF File format for use with digital cameras.

Application

Use this ICAP to determine which formats are available for file transfers, and set the context for
other capability negotiations such as ICAP_COMPRESSION.

Be sure to use the DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET or the DG_CONTROL
/ DAT_SETUPFILEXFER2 / MSG_SET operation to specify the format to be used for a
particular acquisition.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

 Capabilities

TWAIN 1.9a Specification 9-453

Values

Type: TW_UINT16

Default Value: TWFF_BMP (Windows)
TWFF_PICT (Macintosh)

Allowed Values: TWFF_TIFF 0
TWFF_PICT 1
TWFF_BMP 2
TWFF_XBM 3
TWFF_JFIF 4
TWFF_FPX 5
TWFF_TIFFMULTI 6
TWFF_PNG 7
TWFF_SPIFF 8
TWFF_EXIF 9
TWPT_PDF 10
TWPT_JPEG2000 11

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

ICAP_COMPRESSION

Chapter 9

9-454 TWAIN 1.9a Specification

ICAP_IMAGEFILTER

Description

For devices that support image enhancement filtering. This capability selects the algorithm
used to improve the quality of the image.

Application

TWIF_LOWPASS is good for halftone images.

TWIF_BANDPASS is good for improving text.

TWIF_HIGHPASS is good for improving fine lines.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWIF_NONE
Allowed Values: TWIF_NONE 0

TWIF_AUTO 1
TWIF_LOWPASS 2
TWIF_BANDPASS 3
TWIF_HIGHPASS 4

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-455

ICAP_JPEGPIXELTYPE

Description

Allows the application and Source to agree upon a common set of color descriptors that are
made available by the Source. This ICAP is only useful for JPEG-compressed buffered memory
image transfers.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPT_BW 0

TWPT_GRAY 1
TWPT_RGB 2
TWPT_PALETTE 3
TWPT_CMY 4
TWPT_CMYK 5
TWPT_YUV 6
TWPT_YUVK 7
TWPT_CIEXYZ 8

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_COMPRESSION

Chapter 9

9-456 TWAIN 1.9a Specification

ICAP_JPEGQUALITY

Description

Use this capability as a shortcut to select JPEG quantization tables that tradeoff quality versus
compressed image size. Used in concert with DAT_JPEGCOMPRSSION it is possible for an
Application to obtain the tables that are appropriate for varying percentages of quality within a
given Source.

TWJQ_UNKNOWN is a read-only value (MSG_GET or MSG_GETCURRENT), the Application
cannot set the Source to this value. This value is reported if the Application uses
DAT_JPEGCOMPRESSION to select the quantization tables, and the Source is unable to resolve
those tables to a percentage value.

The next three TWJQ_ values are intended as markers into the quality range, and are only
applicable with MSG_SET.

MSG_GET, MSG_GETCURRENT and MSG_GETDEFAULT only return values in the range 0 –
100. If an Application wishes to map a TWJQ_ value to a corresponding value in the range 0 –
100, then it must issue a MSG_GET after a MSG_SET with one of the three TWJQ_ values.

No assumption is made about the meaning of the range 0 – 99, it may be derived from the
JPEG standard or it may be optimized for the Source’s device. 100, though, implies a lossless
form of compression. Applications are not encouraged to use this value since it results in poor
compression, as well as a format that is not currently widely supported in the industry.

TWJQ_UNKNOWN – read-only; must be the setting for this capability if the user sets the JPEG
compression tables using DAT_JPEGCOMPRESSION, and the Source is not able to map the
selected tables to a specific percentage of quality.

TWJQ_LOW – write-only; implies low quality; the images are at the maximum compression
recommended by the Source.

TWJQ_MEDIUM – write-only; implies medium quality; the images are at the balance point
between good compression and good images. This is an arbitrary setting on the part of the
Source writer that is expected to best represent their device. This is the value that Applications
are most encouraged to use.

TWJQ_HIGH – write-only; implies high quality; the images display the maximum quality that
produces any kind of meaningful compression. Note that images at this setting are still
considered to be lossy.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

 Capabilities

TWAIN 1.9a Specification 9-457

Values

Type: TW_INT16

Default Value: No default

Allowed Values: TWJQ_UNKNOWN -4
TWJQ_LOW -3
TWJQ_MEDIUM -2
TWJQ_HIGH -1
0 - 100

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE,
TW_RANGE

Required By

None

Source Required Operations

None

See Also

DAT_JPEGCOMPRESSION

Chapter 9

9-458 TWAIN 1.9a Specification

ICAP_LAMPSTATE

Description

TRUE means the lamp is currently, or should be set to ON. Sources may not support MSG_SET
operations.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE

 Capabilities

TWAIN 1.9a Specification 9-459

ICAP_LIGHTPATH

Description

Describes whether the image was captured transmissively or reflectively.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWLP_REFLECTIVE 0

TWLP_TRANSMISSIVE 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTSOURCE

Chapter 9

9-460 TWAIN 1.9a Specification

ICAP_LIGHTSOURCE

Description

Describes the general color characteristic of the light source used to acquire the image.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWLS_RED 0

TWLS_GREEN 1
TWLS_BLUE 2
TWLS_NONE 3
TWLS_WHITE 4
TWLS_UV 5
TWLS_IR 6

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTPATH

 Capabilities

TWAIN 1.9a Specification 9-461

ICAP_MAXFRAMES

Description

The maximum number of frames the Source can provide or the application can accept per page.

This is a bounding capability only. It does not establish current or future behavior.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: 1 to 216

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_FRAMES
TW_IMAGELAYOUT

Chapter 9

9-462 TWAIN 1.9a Specification

ICAP_MINIMUMHEIGHT

Description

Allows the source to define the minimum height (Y-axis) that the source can acquire.

Application

Source

The minimum height that the device can scan. This may be different depending on the value of
CAP_FEEDERENABLED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: 0 to 32767 in ICAP_UNITS

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

See Also

CAP_FEEDERENABLED
ICAP_PHYSICALHEIGHT
ICAP_UNITS

 Capabilities

TWAIN 1.9a Specification 9-463

ICAP_MINIMUMWIDTH

Description

Allows the source to define theminimum width (X-axis) that the source can acquire.

Source

The minimum width that the device can scan. This may be different depending on the value of
CAP_FEEDERENABLED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: 0 to 32767 in ICAP_UNITS

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

See Also

CAP_FEEDERENABLED
ICAP_PHYSICALWIDTH
ICAP_UNITS

Chapter 9

9-464 TWAIN 1.9a Specification

ICAP_NOISEFILTER

Description

For devices that support noise filtering. This capability selects the algorithm used to remove
noise.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWNF_NONE
Allowed Values: TWNF_NONE 0

TWNF_AUTO 1
TWNF_LONEPIXEL 2
TWNF_MAJORITYRULE 3

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-465

ICAP_ORIENTATION

Description

Defines which edge of the “paper” the image’s “top” is aligned with. This information is used
to adjust the frames to match the scanning orientation of the paper. For instance, if an
ICAP_SUPPORTEDSIZE of TWSS_ISOA4 has been negotiated, and ICAP_ORIENTATION is
set to TWOR_LANDSCAPE, then the Source must rotate the frame it downloads to the scanner
to reflect the orientation of the paper. Please note that setting ICAP_ORIENTATION does not
affect the values reported by ICAP_FRAMES; it just causes the Source to use them in a different
way.

The upper-left of the image is defined as the location where both the primary and secondary
scans originate. (The X axis is the primary scan direction and the Y axis is the secondary scan
direction.) For a flatbed scanner, the light bar moves in the secondary scan direction. For a
handheld scanner, the scanner is drug in the secondary scan direction. For a digital camera, the
secondary direction is the vertical axis when the viewed image is considered upright.

Application

If one pivots the image about its center, then orienting the image in TWOR_LANDSCAPE has
the effect of rotating the original image 90 degrees to the “left.” TWOR_PORTRAIT mode does
not rotate the image. The image may be oriented along any of the four axes located 90 degrees
from the unrotated image. Note that:

TWOR_ROT0 == TWOR_PORTRAIT and TWOR_ROT270 == TWOR_LANDSCAPE.

Source

The Source is responsible for rotating the image if it allows this capacity to be set.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWOR_PORTRAIT
Allowed Values: TWOR_ROT0 0

TWOR_ROT90 1
TWOR_ROT180 2
TWOR_ROT270 3
TWOR_PORTRAIT (equals TWOR_ROT0)
TWOR_LANDSCAPE (equals TWOR_ROT270)

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Chapter 9

9-466 TWAIN 1.9a Specification

Required By

None

Source Required Operations

None

See Also

ICAP_ROTATION

 Capabilities

TWAIN 1.9a Specification 9-467

ICAP_OVERSCAN

Description

Overscan is used to scan outside of the boundaries described by ICAP_FRAMES, and is used to
help acquire image data that may be lost because of skewing.

Consider the following:

Frame
Paper Overscan

This is primarily of use for transport scanners which rely on edge detection to begin scanning.
If overscan is supported, then the device is capable of scanning in the inter-document gap to get
the skewed image information.

Application

Use this capability, if available, to help software processing images for deskew and border
removal.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: TWOV_NONE
Allowed Values: TWOV_NONE 0

TWOV_AUTO 1
TWOV_TOPBOTTOM 2
TWOV_LEFTRIGHT 3
TWOV_ALL 4

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Chapter 9

9-468 TWAIN 1.9a Specification

Required By

None

Source Required Operations

None

 Capabilities

TWAIN 1.9a Specification 9-469

ICAP_PATCHCODEDETECTIONENABLED

Description

Turns patch code detection on and off.

Source

Support this capability if the scanner supports any patch code recognition. If the device allows
this feature to be turned off, then default to off. If the device does not support disabling this
feature, report TRUE and disallow attempts to set FALSE.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

Chapter 9

9-470 TWAIN 1.9a Specification

ICAP_PATCHCODEMAXRETRIES

Description

Restricts the number of times a search will be retried if none are found on each page.

Application

Refine this capability to limit the number of times the patch code search algorithm is retried on
a page that contains no patch codes.

Source

If supported, limit the number of retries the value specified.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-471

ICAP_PATCHCODEMAXSEARCHPRIORITIES

Description

The maximum number of supported search priorities.

Application

Query this value to determine how many patch code detection priorities can be set.

Source

Set this value to limit the number of priorities to speed the detection process.

If patch code searches can be prioritized, report the maximum number of priorities allowed for
a search.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

Chapter 9

9-472 TWAIN 1.9a Specification

ICAP_PATCHCODESEARCHMODE

Description

Restricts patch code searching to certain orientations, or prioritizes one orientation over the
other.

Application

Negotiate this capability if the orientation of patch codes is already known to the application.
Refinement of this capability can speed the patch code search.

Source

If set then apply the specified refinements to future patch code searches.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWBD_HORZ 0

TWBD_VERT 1
TWBD_HORZVERT 2
TWBD_VERTHORZ 3

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-473

ICAP_PATCHCODESEARCHPRIORITIES

Description

A prioritized list of patch code types dictating the order in which patch codes will be sought.

Application

Set this capability to specify the order and priority for patch code searching. Refining the
priorities to only the patch code types of interest to the application can speed the search
process.

Source

If this type of search refinement is supported, then report the current values.

If set, then limit future searches to the specified patch codes in the specified priority order.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPCH_PATCH1

TWPCH_PATCH2
TWPCH_PATCH3
TWPCH_PATCH4
TWPCH_PATCH6
TWPCH_PATCHT

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: TW_ ARRAY

Required By

None

Chapter 9

9-474 TWAIN 1.9a Specification

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-475

ICAP_PATCHCODETIMEOUT

Description

Restricts the total time spent on searching for a patch code on each page.

Application

Refine this value to tune the length of time the search algorithm is allowed to execute before
giving up.

Source

If supported, limit the duration of a patch code search to the value specified.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT32

Default Value: No Default
Allowed Values: 1 to 232 –1

Container for MSG_GET: TW_ENUMERATION
TW_RANGE
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES

Chapter 9

9-476 TWAIN 1.9a Specification

ICAP_PHYSICALHEIGHT

Description

The maximum physical height (Y-axis) the Source can acquire (measured in units of
ICAP_UNITS).

Source

For a flatbed scanner, the scannable height of the platen. For a handheld scanner, the
maximum length of a scan.

For dimensionless devices, such as digital cameras, this ICAP is meaningless for all values of
ICAP_UNITS other than TWUN_PIXELS. If the device is dimensionless, the Source should
return a value of zero if ICAP_UNITS does not equal TWUN_PIXELS. This tells the application
to inquire with TWUN_PIXELS.

Note: The physical acquired area may be different depending on the setting of
CAP_FEEDERENABLED (if the Source has separate feeder and non-feeder acquire
areas).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: 0 to 65535 in ICAP_UNITS

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

CAP_FEEDERENABLED
ICAP_UNITS

 Capabilities

TWAIN 1.9a Specification 9-477

ICAP_PHYSICALWIDTH

Description

The maximum physical width (X-axis) the Source can acquire (measured in units of
ICAP_UNITS).

Source

For a flatbed scanner, the scannable width of the platen. For a handheld scanner, the maximum
width of a scan.

For dimensionless devices, such as digital cameras, this ICAP is meaningless for all values of
ICAP_UNITS other than TWUN_PIXELS. If the device is dimensionless, the Source should
return a value of zero if ICAP_UNITS does not equal TWUN_PIXELS. This tells the application
to inquire with TWUN_PIXELS. The Source should then reply with its X-axis pixel count.

Note: The physical acquired area may be different depending on the setting of
CAP_FEEDERENABLED (if the Source has separate feeder and non-feeder acquire
areas).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: 0 to 65535 in ICAP_UNITS

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: MSG_SET not allowed

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

CAP_FEEDERENABLED
ICAP_UNITS

Chapter 9

9-478 TWAIN 1.9a Specification

ICAP_PIXELFLAVOR

Description

Sense of the pixel whose numeric value is zero (minimum data value). For example, consider a
black and white image:

If ICAP_PIXELTYPE is TWPT_BW then
 If ICAP_PIXELFLAVOR is TWPF_CHOCOLATE
 then Black = 0
 Else if ICAP_PIXELFLAVOR is TWPF_VANILLA
 then White = 0

Application

Sources may prefer a different value depending on ICAP_PIXELTYPE. Set ICAP_PIXELTYPE
and do a MSG_GETDEFAULT to determine the Source’s preferences.

Source

TWPF_CHOCOLATE means this pixel represents the darkest data value that can be generated
by the device (the darkest available optical value may measure greater than 0).

TWPF_VANILLA means this pixel represents the lightest data value that can be generated by
the device (the lightest available optical value may measure greater than 0).

Values

Type: TW_UINT16

Default Value: TWPF_CHOCOLATE
Allowed Values: TWPF_CHOCOLATE 0

TWPF_VANILLA 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

ICAP_PIXELTYPE

 Capabilities

TWAIN 1.9a Specification 9-479

ICAP_PIXELFLAVORCODES

Description

Used only for CCITT data compression. Specifies whether the compressed codes’ pixel “sense”
will be inverted from the Current value of ICAP_PIXELFLAVOR prior to transfer.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWPF_CHOCOLATE
Allowed Values: TWPF_CHOCOLATE 0

TWPF_VANILLA 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_COMPRESSION

Chapter 9

9-480 TWAIN 1.9a Specification

ICAP_PIXELTYPE

Description

The type of pixel data that a Source is capable of acquiring (for example, black and white, gray,
RGB, etc.).

Application

• MSG_GET returns a list of all pixel types available from the Source.

• MSG_SET on a TW_ENUMERATION structure requests that the Source restrict the
available pixel types to the enumerated list.

• MSG_SET on a TW_ONEVALUE container specifies the only pixel type the application
can accept.

If the application plans to transfer data through any mechanism other than Native and cannot
handle all possible ICAP_PIXELTYPEs, it must support negotiation of this ICAP.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPT_BW 0

TWPT_GRAY 1
TWPT_RGB 2
TWPT_PALETTE 3
TWPT_CMY 4
TWPT_CMYK 5
TWPT_YUV 6
TWPT_YUVK 7
TWPT_CIEXYZ 8
TWPT_SRGB 9
TWPT_SRGB64 10

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Image Sources

 Capabilities

TWAIN 1.9a Specification 9-481

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

ICAP_BITDEPTH
ICAP_BITDEPTHREDUCTION

Chapter 9

9-482 TWAIN 1.9a Specification

ICAP_PLANARCHUNKY

Description

Allows the application and Source to identify which color data formats are available. There are
two options, “planar” and “chunky.”

For example, planar RGB data is transferred with the entire red plane of data first, followed by
the entire green plane, followed by the entire blue plane (typical for three-pass scanners).
“Chunky” mode repetitively interlaces a pixel from each plane until all the data is transferred
(R-G-B-R-G-B…) (typical for one-pass scanners).

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPC_CHUNKY 0

TWPC_PLANAR 1

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT

See Also

TW_IMAGEINFO.Planar

 Capabilities

TWAIN 1.9a Specification 9-483

ICAP_ROTATION

Description

How the Source can/should rotate the scanned image data prior to transfer. This doesn’t use
ICAP_UNITS. It is always measured in degrees. Any applied value is additive with any
rotation specified in ICAP_ORIENTATION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 0
Allowed Values: +/- 360 degrees

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_ORIENTATION

Chapter 9

9-484 TWAIN 1.9a Specification

ICAP_SHADOW

Description

Specifies which value in an image should be interpreted as the darkest “shadow.” All values
“darker” than this value will be clipped to this value.

Application

Whether darker values are smaller or larger can be determined by examining the Current value
of ICAP_PIXELFLAVOR.

Source

If more or less than 8 bits are used to describe the image, the actual data values should be
normalized to fit within the 0-255 range. The normalization need not result in a homogeneous
distribution if the original distribution was not homogeneous.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 0
Allowed Values: 0 to 255

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_PIXELFLAVOR

 Capabilities

TWAIN 1.9a Specification 9-485

ICAP_SUPPORTEDBARCODETYPES

Description

Provides a list of bar code types that can be detected by the current Data Source.

Application

Query this capability to determine if the Data Source can detect bar codes that are appropriate
to the particular application.

Source

If bar code detection is supported, report all the bar code types that can be detected.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWBT_3OF9 0

TWBT_2OF5INTERLEAVED 1
TWBT_2OF5NONINTERLEAVED 2
TWBT_CODE93 3
TWBT_CODE128 4
TWBT_UCC128 5
TWBT_CODABAR 6
TWBT_UPCA 7
TWBT_UPCE 8
TWBT_EAN8 9
TWBT_EAN13 10
TWBT_POSTNET 11
TWBT_PDF417 12
TWBT_2OF5INDUSTRIAL 13
TWBT_2OF5MATRIX 14
TWBT_2OF5DATALOGIC 15
TWBT_2OF5IATA 16
TWBT_3OF9FULLASCII 17
TWBT_CODABARWITHSTARTSTOP 18
TWBT_MAXICODE 19

Container for MSG_GET: TW_ARRAY
Container for MSG_SET: MSG_SET not allowed

Chapter 9

9-486 TWAIN 1.9a Specification

Required By

None

Source Required Operations

None

See Also

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

 Capabilities

TWAIN 1.9a Specification 9-487

ICAP_SUPPORTEDPATCHCODETYPES

Description

A list of patch code types that may be detected by the current Data Source.

Application

Query this capability to determine if the Data Source can detect patch codes that are
appropriate to the Application.

Source

If patch code detection is supported, report all the possible patch code types that might be
detected.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default
Allowed Values: TWPCH_PATCH1

TWPCH_PATCH2
TWPCH_PATCH3
TWPCH_PATCH4
TWPCH_PATCH6
TWPCH_PATCHT

Container for MSG_GET: TW_ARRAY
TW_ONEVALUE

Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

ICAP_PATCHCODEDETECTIONENABLED
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

Chapter 9

9-488 TWAIN 1.9a Specification

ICAP_SUPPORTEDSIZES

Description

For devices that support fixed frame sizes. Defined sizes match typical page sizes. This
specifies the size(s) the Source can/should use to acquire image data.

(*) Constant should not be used in Sources or Applications using TWAIN 1.8 or higher. For
instance, use TWSS_A4 instead of TWSS_A4LETTER (note that the values are the same, the
reason for the new constants is to improve naming clarification and consistency).

Note: TWSS_B has been removed from the specification.

Source

The frame size selected by using this capability should be reflected in the TW_IMAGELAYOUT
structure information.

If the Source cannot acquire the exact frame size specified by the application, it should provide
the closest possible size (preferably acquiring an image that is larger than the requested frame
in both axes).

For devices that support physical dimensions TWSS_NONE indicates that the maximum image
size supported by the device is to be used. Devices that do not support physical dimensions
should not support this capability.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Default Value: No Default

Allowed Values: TWSS_NONE 0
*TWSS_A4LETTER 1
*TWSS_B5LETTER 2
TWSS_USLETTER 3
TWSS_USLEGAL 4
TWSS_A5 5
*TWSS_B4 6
*TWSS_B6 7
TWSS_USLEDGER 9
TWSS_USEXECUTIVE 10
TWSS_A3 11
*TWSS_B3 12
*TWSS_A6 13
TWSS_C4 14
TWSS_C5 15

 Capabilities

TWAIN 1.9a Specification 9-489

TWSS_C6 16
// 1.8 Additions
TWSS_4A0 17
TWSS_2A0 18
TWSS_A0 19
TWSS_A1 20
TWSS_A2 21
TWSS_A4 TWSS_A4LETTER
TWSS_A7 22
TWSS_A8 23
TWSS_A9 24
TWSS_A10 25
TWSS_ISOB0 26
TWSS_ISOB1 27
TWSS_ISOB2 28
TWSS_ISOB3 TWSS_B3
TWSS_ISOB4 TWSS_B4
TWSS_ISOB5 29
TWSS_ISOB6 TWSS_B6
TWSS_ISOB7 30
TWSS_ISOB8 31
TWSS_ISOB9 32
TWSS_ISOB10 33
TWSS_JISB0 34
TWSS_JISB1 35
TWSS_JISB2 36
TWSS_JISB3 37
TWSS_JISB4 38
TWSS_JISB5 TWSS_B5LETTER
TWSS_JISB6 39
TWSS_JISB7 40
TWSS_JISB8 41
TWSS_JISB9 42
TWSS_JISB10 43
TWSS_C0 44
TWSS_C1 45
TWSS_C2 46
TWSS_C3 47
TWSS_C7 48
TWSS_C8 49
TWSS_C9 50
TWSS_C10 51
TWSS_USSTATEMENT 52
TWSS_BUSINESSCARD 53

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION,
TW_ONEVALUE

Chapter 9

9-490 TWAIN 1.9a Specification

Required By

All Image Sources that support fixed frame sizes.

Source Required Operations

MSG_GET/CURRENT/DEFAULT, MSG_SET/RESET

See Also

ICAP_FRAMES
TW_IMAGEINFO
TW_IMAGELAYOUT

 Capabilities

TWAIN 1.9a Specification 9-491

ICAP_THRESHOLD

Description

Specifies the dividing line between black and white. This is the value the Source will use to
threshold, if needed, when ICAP_PIXELTYPE = TWPT_BW.

The value is normalized so there are no units of measure associated with this ICAP.

Application

Application will typically set ICAP_BITDEPTHREDUCTION to TWBR_THRESHOLD to use
this capability.

Source

Source should fit available values linearly into the defined range such that the lowest available
value equals 0 and the highest equals 255.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 128
Allowed Values: 0 to 255

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_BITDEPTHREDUCTION

Chapter 9

9-492 TWAIN 1.9a Specification

ICAP_TILES

Description

This is used with buffered memory transfers. If TRUE, Source can provide application with
tiled image data.

Application

If set to TRUE, the application expects the Source to supply tiled data for the upcoming
transfer(s). This persists until the application sets it to FALSE. If the application sets it to
FALSE, Source will supply strip data.

Source

If Source can supply tiled data and application does not set this ICAP, Source may or may not
supply tiled data at its discretion.

In State 6, ICAP_TILES should reflect whether tiles or strips will be used in the upcoming
transfer.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: No Default
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

TW_IMAGEMEMXFER

 Capabilities

TWAIN 1.9a Specification 9-493

ICAP_TIMEFILL

Description

Used only with CCITT data compression. Specifies the minimum number of words of
compressed codes (compressed data) to be transmitted per line.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: 1
Allowed Values: 1 to 216

Container for MSG_GET: TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

ICAP_COMPRESSION

Chapter 9

9-494 TWAIN 1.9a Specification

ICAP_UNDEFINEDIMAGESIZE

Description

If TRUE the Source will issue a MSG_XFERRDY before starting the scan.

Note: The Source may need to scan the image before initiating the transfer. This is the case if
the scanned image is rotated or merged with another scanned image.

Application

Used by the application to notify the Source that the application accepts -1 as the image width
or -length in the TW_IMAGEINFO structure.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Default Value: FALSE
Allowed Values: TRUE or FALSE

Container for MSG_GET: TW_ONEVALUE
Container for MSG_SET: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

TW_IMAGEINFO

 Capabilities

TWAIN 1.9a Specification 9-495

ICAP_UNITS

Description

Unless a quantity is dimensionless or uses a specified unit of measure, ICAP_UNITS
determines the unit of measure for all quantities.

Application

Applications should be able to handle TWUN_PIXELS if they want to support data transfers
from “dimensionless” devices such as digital cameras.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Default Value: TWUN_INCHES
Allowed Values: TWUN_INCHES 0

TWUN_CENTIMETERS 1
TWUN_PICAS 2
TWUN_POINTS 3
TWUN_TWIPS 4
TWUN_PIXELS 5
TWUN_MILLIMETERS 6

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

ICAP_FRAMES
DAT_IMAGELAYOUT

Chapter 9

9-496 TWAIN 1.9a Specification

ICAP_XFERMECH

Description

Allows the application and Source to identify which transfer mechanisms they have in
common.

Application

The current setting of ICAP_XFERMECH must match the constant used by the application to
specify the transfer mechanism when starting the transfer using the triplet: DG_IMAGE /
DAT_IMAGExxxxXFER / MSG_GET.

Values

Type: TW_UINT16

Default Value: TWSX_NATIVE
Allowed Values: TWSX_NATIVE 0

TWSX_FILE 1
TWSX_MEMORY 2
TWSX_FILE2 3
TWSX_MEMFILE 4

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET

 Capabilities

TWAIN 1.9a Specification 9-497

ICAP_XNATIVERESOLUTION

Description

The native optical resolution along the X-axis of the device being controlled by the Source.
Most devices will respond with a single value (TW_ONEVALUE).

This is NOT a list of all resolutions that can be generated by the device. Rather, this is the
resolution of the device’s optics. Measured in units of pixels per unit as defined by
ICAP_UNITS (pixels per TWUN_PIXELS yields dimensionless data).

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: >0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

ICAP_UNITS
ICAP_XRESOLUTION
ICAP_YNATIVERESOLUTION

Chapter 9

9-498 TWAIN 1.9a Specification

ICAP_XRESOLUTION

Description

All the X-axis resolutions the Source can provide.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS
yields dimensionless data). That is, when the units are TWUN_PIXELS, both
ICAP_XRESOLUTION and ICAP_YRESOLUTION shall report 1 pixel/pixel. Some data
sources like to report the actual number of pixels that the device reports, but that response is
more appropriate in ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

Application

Setting this value will restrict the various resolutions that will be available to the user during
acquisition.

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_YRESOLUTION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: >0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

ICAP_UNITS
ICAP_XNATIVERESOLUTION
ICAP_YRESOLUTION

 Capabilities

TWAIN 1.9a Specification 9-499

ICAP_XSCALING

Description

All the X-axis scaling values available. A value of ‘1.0’ is equivalent to 100% scaling. Do not
use values less than or equal to zero.

Application

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_YSCALING. There are no units inherent with this data as it is normalized to 1.0 being
“unscaled.”

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 1.0
Allowed Values: > 0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_YSCALING

Chapter 9

9-500 TWAIN 1.9a Specification

ICAP_YNATIVERESOLUTION

Description

The native optical resolution along the Y-axis of the device being controlled by the Source.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS
yields dimensionless data).

Application

Most devices will respond with a single value (TW_ONEVALUE). This is NOT a list of all
resolutions that can be generated by the device. Rather, this is the resolution of the device’s
optics

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: > 0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE

Container for MSG_SET: MSG_SET not allowed

Required By

None

Source Required Operations

None

See Also

ICAP_UNITS
ICAP_XNATIVERESOLUTION
ICAP_YRESOLUTION

 Capabilities

TWAIN 1.9a Specification 9-501

ICAP_YRESOLUTION

Description

All the Y-axis resolutions the Source can provide.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS
yields dimensionless data). That is, when the units are TWUN_PIXELS, both
ICAP_XRESOLUTION and ICAP_YRESOLUTION shall report 1 pixel/pixel. Some data
sources like to report the actual number of pixels that the device reports, but that response is
more appropriate in ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

Application

Setting this value will restrict the various resolutions that will be available to the user during
acquisition.

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_XRESOLUTION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: No Default
Allowed Values: > 0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

All Image Sources

Source Required Operations

MSG_GET/CURRENT/DEFAULT,
MSG_SET/RESET

See Also

ICAP_UNITS
ICAP_XRESOLUTION
ICAP_YNATIVERESOLUTION

Chapter 9

9-502 TWAIN 1.9a Specification

ICAP_YSCALING

Description

All the Y-axis scaling values available. A value of ‘1.0’ is equivalent to 100% scaling. Do not
use values less than or equal to zero.

There are no units inherent with this data as it is normalized to 1.0 being “unscaled.”

Application

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_XSCALING.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Default Value: 1.0
Allowed Values: > 0

Container for MSG_GET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Container for MSG_SET: TW_ENUMERATION
TW_ONEVALUE
TW_RANGE

Required By

None

Source Required Operations

None

See Also

ICAP_XSCALING

 Capabilities

TWAIN 1.9a Specification 9-503

ICAP_ZOOMFACTOR

Description

When used with MSG_GET, return all camera supported lens zooming range.

Application

Use this capability with MSG_SET to select one of the lens zooming value that the Source
supports.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Values

Type: TW_INT16

Default Value: 0
Allowed Values: Source dependent.

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE,
TW_RANGE

Container for MSG_SET: TW_ONEVALUE

Required By

None. Highly recommended for digital cameras that are equipped with zoom lenses.

Source Required Operations

MSG_GET, MSG_SET,
MSG_GETCURRENT,
MSG_RESET

Chapter 9

9-504 TWAIN 1.9a Specification

TWAIN 1.9a Specification 10-505

10
Return Codes and Condition Codes

Chapter Contents
An Overview of Return Codes and Condition Codes 505
Currently Defined Return Codes 506
Currently Defined Condition Codes 507
Custom Return and Condition Codes 508

An Overview of Return Codes and Condition Codes
The TWAIN protocol defines no dynamic messaging system through which the application
might determine, in real-time, what is happening in either the Source Manager or a Source.
Neither does the protocol implement the native messaging systems built into the operating
environments that TWAIN is defined to operate under (Microsoft Windows and Macintosh).
This decision was made due to issues regarding platform specificity and higher-than-desired
implementation costs.

Instead, for each call the application makes to DSM_Entry(), whether aimed at the Source
Manager or a Source, the Source Manager returns an appropriate Return Code (TWRC_xxxx).
The Return Code may have originated from the Source if that is where the original operation
was destined.

To get more specific status information, the application can use the DG_CONTROL /
DAT_STATUS / MSG_GET operation to inquire the complimentary Condition Code
(TWCC_xxxx) from the Source Manager or Source (whichever one originated the Return Code).

The application should always check the Return Code. If the Return Code is TWRC_FAILURE,
it should also check the Condition Code. This is especially important during capability
negotiation.

There are very few, if any, catastrophic error conditions for the application to worry about.
Usually, the application will only have to “recover” from low memory errors caused from
allocations in the Source. Most error conditions are handled by the Source Manager or, most
typically, by the Source (often involving interaction with the user). If the Source fails in a way
that is unrecoverable, it will ask to have its user interface disabled by sending the
MSG_CLOSEDSREQ to the application’s event loop.

Chapter 10

10-506 TWAIN 1.9a Specification

Currently Defined Return Codes
The following are the currently defined return codes:

TWRC_CANCEL Abort transfer or the Cancel button was pressed.

TWRC_CHECKSTATUS Partially successful operation; request further information.

TWRC_DSEVENT Event (or Windows message) belongs to this Source.

TWRC_ENDOFLIST No more Sources found after MSG_GETNEXT.

TWRC_FAILURE Operation failed - get the Condition Code for more
information.

TWRC_NOTDSEVENT Event (or Windows message) does not belong to this Source.

TWRC_SUCCESS Operation was successful.

TWRC_XFERDONE All data has been transferred.

 Return Codes and Condition Codes

TWAIN 1.9a Specification 10-507

Currently Defined Condition Codes
The following are the currently defined condition codes:

TWCC_BADCAP* Capability not supported by Source or operation (get,
set) is not supported on capability, or capability had
dependencies on other capabilities and cannot be
operated upon at this time
(Obsolete, see TWCC_CAPUNSUPPORTED,
TWCC_CAPBADOPERATION, and
TWCC_CAPSEQERROR).

TWCC_BADDEST Unknown destination in DSM_Entry.

TWCC_BADPROTOCOL Unrecognized operation triplet.

TWCC_BADVALUE Data parameter out of supported range.

TWCC_BUMMER General failure. Unload Source immediately.

TWCC_CAPUNSUPPORTED* Capability not supported by Source.

TWCC_CAPBADOPERATION* Operation (i.e., Get or Set) not supported on
capability.

TWCC_CAPSEQERROR* Capability has dependencies on other capabilities and
cannot be operated upon at this time.

TWCC_DENIED File System operation is denied (file is protected).

TWCC_DOUBLEFEED Transfer failed because of a feeder error

TWCC_FILEEXISTS Operation failed because file already exists.

TWCC_FILENOTFOUND File not found.

TWCC_LOWMEMORY Not enough memory to complete operation.

TWCC_MAXCONNECTIONS Source is connected to maximum supported number of
applications.

TWCC_NODS Source Manager unable to find the specified Source.

TWCC_NOTEMPTY Operation failed because directory is not empty.

TWCC_OPERATIONERROR Source or Source Manager reported an error to the
user and handled the error; no application action
required.

TWCC_PAPERJAM Transfer failed because of a feeder error

TWCC_SEQERROR Illegal operation for current Source Manager or Source
state.

TWCC_SUCCESS Operation worked.

* TWCC_BADCAP has been replaced with three new condition codes that more clearly specify
the reason for a capability operation failure. For backwards compatibility applications should
also accept TWCC_BADCAP and treat it as a general capability operation failure. No 1.6 Image
Data Sources should return this condition code, but use the new ones instead.

Chapter 10

10-508 TWAIN 1.9a Specification

Custom Return and Condition Codes
Although probably not necessary or desirable, it is possible to create custom Return Codes and
Condition Codes. Refer to the TWAIN.H file for the value of TWRC_CUSTOMBASE for
custom Return Codes and TWCC_CUSTOMBASE for custom Condition Codes. All custom
values must be numerically greater than these base values. Remember that the consumer of
these custom values will look in your TW_IDENTITY.ProductName field to clarify what the
identifier’s value means. There is no other protection against overlapping custom definitions.

TWAIN 1.9a Specification A-509

A
TWAIN Articles

Contents
Device Events 509
Supported Sizes 513
Automatic Capture 515
Camera Preview 516
File System 519
Internationalization 528
Audio Snippets 535
How to Use a Preview Device 538
Imprinter/Endorser 540
Capability Ordering 541
Defaults 547

The articles in this appendix provide additional information about some of the features
described in this specification.

Device Events
TWAIN 1.8 expands upon asynchronous event notification. Previous versions provided the
DG_CONTROL / DAT_NULL messages: MSG_CLOSEDSOK, MSG_CLOSEDSREQ and
MSG_XFERREADY to permit the Source to alert the Application that it needed to exit, or that
an image was ready to be processed. With the addition of Digital Cameras, and the burgeoning
interest in Push Technologies, it has become desirable to enhance TWAIN in this area.

An event begins when the Source needs to alert the Application to some change that has
occurred within the device. For example, the owner of a Digital Camera (which is tethered to a
host machine) has changed the setting for flash from on to off. The Source wants to alert the
Application of this change: first, it records the event in a FIFO queue; second, it sends a
DG_CONTROL / DAT_NULL / DAT_DEVICEEVENT to the Source Manager, which forwards
the message to the Application.

Appendix A

A-510 TWAIN 1.9a Specification

The Application receives the DG_CONTROL / DAT_NULL / DAT_DEVICEEVENT, and
immediately issues a DG_CONTROL / DAT_DEVICEEVENT / MSG_GET request to the
Source. The Source delivers the information about the event, and pops it off the queue. The
process concludes with the Application examining the information and acting upon it, in this
case by alerting the user that the flash setting on the camera has been changed.

Notes:

• Sources must start up in a mode with device events turned off (an empty array for
CAP_DEVICEEVENTS), this is for the benefit of pre-1.8 applications which may not be
able to process this new event.

• Device events are never generated by an Application setting a value within a Source
(such as Application changing ICAP_FLASHUSED2). Device events are only generated
in response to some outside change within the Source or the Device (such as the User
changing the flash setting on the camera).

• Sources must maintain an internal Event Queue, so that they can report each and every
device event to the Application in the order of their occurrence.

• Device events are supported in State 4. Windows Sources must use the main window
handle supplied with the DG_CONTROL / DAT_PARENT / MSG_OPENDS if they
issue device events in State 4. In States 5 through 7 Sources must use the
pTW_USERINTERFACE->hParent supplied in the DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS triplet.

• Since device events may occur in State 4, Applications that enable them using
CAP_DEVICEEVENTS must be ready to receive and process them.

• When the Application receives a device event, it must immediately collect the
information about it. The Application must not issue the DG_CONTROL /
DAT_DEVICEEVENT / MSG_GET, except when it has received a DG_CONTROL /
DAT_NULL / DAT_DEVICEEVENT message.

• The Application must process events without User intervention, this is to prevent
situations where the device event queue builds up because a User is not responding to
the system.

• Applications may sometimes fail to respond to a Source’s device events. A maximum
queue size should be selected so that the Source does not exhaust memory. If the queue
fills, the Source must do the following:
! Turns off device events (resets CAP_DEVICEEVENT to an empty array).
! Refuse to set CAP_DEVICEEVENT until the queue is emptied, return

TWCC_SEQERROR.
! Process DG_CONTROL / DAT_DEVICEEVENT / MSG_GET requests for each item

on the device event queue.
! After the last device event is read by the Application, return TWRC_FAILURE /

TWCC_DEVICEEVENTOVERFLOW for the next call to DG_CONTROL /
DAT_DEVICEEVENT / MSG_GET.

! After TWCC_DEVICEEVENTOVERFLOW has been reported, permit the Source to
set CAP_DEVICEEVENT again.

 TWAIN Articles

TWAIN 1.9a Specification A-511

Source

Flash
ON OFF

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

Step 1: The Source senses that the device has changed from ON to OFF and stores this
information in an Event Queue. A Queue must be used because the Source may
generate multiple events before the Application can respond.

Source

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

DG_CONTROL /
DAT_NULL /
MSG_DEVICEEVENT

Flash
OFF

Step 2: The Source sends a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT to the
Application. The Application only knows that some Event has taken place.

Source

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

DG_CONTROL/
DAT_DEVICEEVENT
MSG_GET

Flash
OFF

Flash
OFF

Step 3: The Application sends a DG_CONTROL / DAT_DEVICEEVENT / MSG_GET to
the Source to learn about the Event. The Source informs the Application that the
flash is OFF and it clears the Event from its Queue.

Source

(empty)

Event Queue

Source
Manager

Application

Flash
OFF

Display:
Flash OFF

Flash
OFF

Step 4: The Application informs the User that the flash is now OFF.

Device Events

Appendix A

A-512 TWAIN 1.9a Specification

This section details the various event types and how Sources and Applications should make use
of them.

TWDE_CHECKAUTOMATICCAPTURE
The automatic capture settings on the device have been changed.

TWDE_CHECKBATTERY
Status of the battery has changed. Sources will report BatteryMinutes or
BatteryPercentage depending on which capabilities say they support.

TWDE_CHECKDEVICEONLINE
The device has been powered off. If an Application receives this device event, it should
call CAP_DEVICEONLINE to verify the state of the Source, and then proceed as seems
appropriate.

TWDE_CHECKFLASH
The flash setting on the device has been changed.

TWDE_CHECKPOWERSUPPLY
The power supply has changed, for example this event would be generated if AC was
removed from a device, putting it on battery. Scanners may also provide this event to
notify that a power on reset has taken place, indicating that the device has been power
cycled.

TWDE_CHECKRESOLUTION
The resolution on the device has changed.

TWDE_DEVICEADDED
A device has been added to the Source. See DG_CONTROL / DAT_FILESYSTEM /
MSG_CHANGEDIRECTORY and DG_CONTROL / DAT_FILESYSTEM /
MSG_GETINFO to get more information about the new device.

TWDE_DEVICEOFFLINE
A device has become unavailable. This is different from TWDC_DEVICEREMOVED,
since the device is assumed to be connected.

TWDE_DEVICEREADY
A device is ready to capture another image. Applications should be careful when
negotiating this event, especially in situations where images are gathered quickly, as
with automatic capture.

TWDE_DEVICEREMOVED
A device has been removed from the Source. This is different from
TWDE_DEVICEOFFLINE. As soon as this event is received an Application should re-
negotiate its current device, since that may have been the one that was removed.
Sources must default to the TWFY_CAMERA device if the current device is removed.

TWDE_PAPERDOUBLEFEED
Report double feeds to the Application. Because of the asynchronous nature of device
events there may still be images waiting to be transferred, applications need to decide
if they want to recover these images or discard them.

TWDE_PAPERJAM
Report paper jams to the Application. Because of the asynchronous nature of device
events there may still be images waiting to be transferred, applications need to decide
if they want to recover these images or discard them.

 TWAIN Articles

TWAIN 1.9a Specification A-513

Supported Sizes
Typical uses for ICAP_SUPPORTEDSIZES include, but are not limited to the following:

A0, A1 Technical drawings, posters
A2, A3 Drawings, diagrams, large tables
A4 Letters, magazines, forms, catalogs, laser printer and copying

machine output
A5 Note pads
A6 Postcards
B5, A5, B6, A6 Books
C4, C5, C6 Envelopes for A4 letters: unfolded (C4), folded once (C5), folded

twice (C6)
B4, A3 Newspapers, supported by most copying machines in addition to A4

The following table details the physical dimensions associated with ICAP_SUPPORTEDSIZES.
Multiply millimeters by 0.03937 to get the approximate inches. Multiply inches by 25.4 to get
the approximate millimeters.

ICAP_SUPPORTEDSIZES Description

TWSS_NONE Images will match the maximum scanning dimensions of the
device. This setting is only applicable to devices that have
fixed measurable dimensions, such as most scanners. Devices
that do not support physical dimensions should not support
ICAP_SUPPORTEDSIZES.

TWSS_A4LETTER
TWSS_B5LETTER
TWSS_B3
TWSS_B4
TWSS_B6

These values are preserved for backward compatibility.
TWAIN 1.8+ enabled Applications should not use these
settings.

TWSS_B This value is obsolete, and no longer supported by the
specification. Do not use it.

TWSS_USLETTER 8.5” x 11.0” (216mm x 280mm)

TWSS_USLEGAL 8.5” x 14.0” (216mm x 356mm)

TWSS_USLEDGER 11.0” x 17.0” (280mm x 432mm)

TWSS_USEXECUTIVE 7.25” x 10.5” (184mm x 267mm)

TWSS_USSTATEMENT 5.5” x 8.5” (140mm x 216mm)

Appendix A

A-514 TWAIN 1.9a Specification

TWSS_BUSINESSCARD 90mm x 55mm

TWSS_4A0 1682mm x 2378mm

TWSS_2A0 1189mm x 1682mm

TWSS_A0 841mm x 1189mm

TWSS_A1 594mm x 841mm

TWSS_A2 420mm x 594mm

TWSS_A3 297mm x 420mm

TWSS_A4 210mm x 297mm

TWSS_A5 148mm x 210mm

TWSS_A6 105mm x 148mm

TWSS_A7 74mm x 105mm

TWSS_A8 52mm x 74mm

TWSS_A9 37mm x 52mm

TWSS_A10 26mm x 37mm

TWSS_ISOB0 1000mm x 1414mm

TWSS_ISOB1 707mm x 1000mm

TWSS_ISOB2 500mm x 707mm

TWSS_ISOB3 353mm x 500mm

TWSS_ISOB4 250mm x 353mm

TWSS_ISOB5 176mm x 250mm

TWSS_ISOB6 125mm x 176mm

TWSS_ISOB7 88mm x 125mm

TWSS_ISOB8 62mm x 88mm

TWSS_ISOB9 44mm x 62mm

TWSS_ISOB10 31mm x 44mm

TWSS_JISB0 1030mm x 1456mm

TWSS_JISB1 728mm x 1030mm

TWSS_JISB2 515mm x 728mm

TWSS_JISB3 364mm x 515mm

TWSS_JISB4 257mm x 364mm

TWSS_JISB5 182mm x 257mm

TWSS_JISB6 128mm x 182mm

TWSS_JISB7 91mm x 128mm

TWSS_JISB8 64mm x 91mm

TWSS_JISB9 45mm x 64mm

TWSS_JISB10 32mm x 45mm

 TWAIN Articles

TWAIN 1.9a Specification A-515

TWSS_C0 917mm x 1297mm

TWSS_C1 648mm x 917mm

TWSS_C2 458mm x 648mm

TWSS_C3 324mm x 458mm

TWSS_C4 229mm x 324mm

TWSS_C5 162mm x 229mm

TWSS_C6 114mm x 162mm

TWSS_C7 81mm x 114mm

TWSS_C8 57mm x 81mm

TWSS_C9 40mm x 57mm

TWSS_C10 28mm x 40mm

Automatic Capture
Automatic image capture is intended for Digital Cameras, although there may be opportunities
for other kinds of devices. The intention is to allow an Application to control when pictures are
taken, how many pictures are taken, and the interval of time between picture taking. All that is
required is that the device be able to perform capture on command from the Source, the timing
control and storage of pictures may reside in the Source or the device; the Application does not
care.

There are three capabilities needed to control automatic capture:

• CAP_AUTOMATICCAPTURE
• CAP_TIMEBEFOREFIRSTCAPTURE
• CAP_TIMEBETWEENCAPTURES

And one triplet:

• DG_CONTROL/DAT_FILESYSTEM/MSG_AUTOMATICCAPTUREDIRECTORY

CAP_AUTOMATICCAPTURE selects the number of images to be captured. A value of zero
(0), the default, disables it. CAP_TIMEBEFOREFIRSTCAPTURE selects how many
milliseconds are to pass before the first picture is taken by the device. If this value is 0, then
picture taking begins immediately. CAP_TIMEBETWEENCAPTURES selects the milliseconds
of elapsed time between pictures. If this value is 0, then the pictures are taken as fast as the
device can go.

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY selects the
directory that will receive the images as they are captured.

Automatic capture expects the device (or Source) to manage the storage of images until the
Application is ready to collect them. Applications may choose to retrieve images as they are
captured by the Source (using the DAT_FILESYSTEM triplets to browse the storage directory),
but must realize that this may affect the performance of the device.

Appendix A

A-516 TWAIN 1.9a Specification

The nature of automatic capture suggests that an Application should be able to disconnect from
a Source and expect that if it returns after CAP_TIMEBEFOREFIRSTCAPTURE has passed,
there may be images available for it to collect. Because of this Sources should remember their
automatic capture settings from session to session, so that a Source starting up does not
inadvertently clear them.

Applications need to remember that since the capture of images may occur outside of their
control that the settings may be changed directly on the device by the user, resulting in
alternations in any of the automatic capture settings. Applications that cannot support this
uncertainty should clear the Source’s automatic capture settings prior to shutdown (and after
notifying the User).

Camera Preview
Some digital cameras offer a way to preview the intended shot through either a continuous
flow of low-resolution frames or streaming video. TWAIN exposes two methods for a Source
to present this information to an Application, both in association with the
TWFY_CAMERAPREVIEW device.

The TWFY_CAMERAPREVIEW Device

Sources that wish to provide access to their preview camera must do so through
DAT_FILESYSTEM. A minimum configuration includes a single TWFY_CAMERA and a single
TWFY_CAMERAPREVIEW. The Application discovers what devices are available by using the
DAT_FILESYSTEM commands MSG_GETFIRSTFILE and MSG_GETNEXTFILE. It can then
switch from the startup default TWFY_CAMERA to the TWFY_CAMERAPREVIEW using the
MSG_CHANGEDIRECTORY command.

Performance

It is important when taking a picture from preview mode that the switch from
TWFY_CAMERAPREVIEW to TWFY_CAMERA happens as quickly as possible. Applications
can minimize the switch over time by negotiating the settings of the TWFY_CAMERA before
changing to the TWFY_CAMERAPREVIEW device to collect real-time images.

Sources can help by optimizing their communication with the TWFY_CAMERA, perhaps
downloading its values when the user sends MSG_ENABLEDS to the
TWFY_CAMERAPREVIEW device so that when the switch back occurs all that needs to
happen is a command sent to the camera to take a picture.

Another matter of importance is the transfer mechanism. If the camera is capable of sending a
run of continuous snapshots to the application (as opposed to real video streaming), then it is
recommended that the TWFY_CAMERAPREVIEW device only support an ICAP_XFERMECH
of TWSX_NATIVE.

 TWAIN Articles

TWAIN 1.9a Specification A-517

Entering Preview Mode

An application should do the following before entering preview mode.

1. The application sends MSG_OPENDS to the Source.

2. The application determines that the Source TWFY_CAMERAPREVIEW device.

3. The user/application negotiates values for the TWFY_CAMERA device.

4. The user/application decides to enter preview mode. The application uses
MSG_CHANGEDIRECTORY to change to the TWFY_CAMERAPREVIEW device.

5. The application uses MSG_ENABLEDS to enter preview mode. Note that the value of
ShowUI should depend on which of the next two sections the application decides to
use to control the Source (GUI mode or programmatic).

Previewing with the Source’s GUI (ShowUI == TRUE)

If the application relies solely on the Source’s GUI for its control of the camera, then it shouldn’t
have to worry about preview mode issues, since it is hoped that a Source that supports preview
will provide access to it from its GUI. This section is concerned with a more limited area,
where an application has opted to control the Source programmatically, except for the use of
preview. One reason an application might need to do this is to provide preview support for
cameras that output streaming video. TWAIN does not have a mechanism for handling this
kind of data, so if the only way that a TWAIN application will be able to show this kind of
preview data, is if the Source provides a GUI that can show it.

If the Source has CAP_CAMERAPREVIEWUI set to TRUE, then it is possible for the
application to use this to preview the images coming from the camera. In this mode the
application does not have to concern itself with the kind of data that the Source is providing,
since the Source takes the responsibility of displaying the preview images to the user.
However, the application does have to wait for the triggers that indicates that the user wishes
to take a picture, or that they wish to exit from preview mode. To help standardize this
behavior, the preview GUI should be able to indicate two things.

1. Take a picture – if the user selects to take a picture, perhaps by pressing a button
labeled CAPTURE, then the Source should send the DAT_NULL command
MSG_CLOSEDSOK back to the application.

2. Cancel preview – if the user decides to exit from preview mode, then the Source
should send the DAT_NULL command MSG_CLOSEDSREQ back to the application.
The application should then send MSG_DISABLEDS to the Source, change back to the
TWFY_CAMERA device, and resume its programmatic control of the Source.

Previewing under Programmatic Control (ShowUI == FALSE):

TWAIN provides programmatic support for TWFY_CAMERAPREVIEW devices that operate
by taking a continuous flow of low-resolution snapshots. An application learns that a Source is
capable of this by changing to TWFY_CAMERAPREVIEW and testing ICAP_XFERMECH. If
the capability is supported, then the TWFY_CAMERAPREVIEW device is capable of
transferring these low-resolution images fast enough to simulate real-time video. The way the
application obtains these images is similar to how scanners work. The application sets
CAP_XFERCOUNT to –1 and enables the Source. The Source sends a MSG_XFERREADY to
the application, and the application begins transferring and displaying the low-resolution
images as fast as it can. These steps are repeated to aid understanding…

Appendix A

A-518 TWAIN 1.9a Specification

1. The application negotiates any capabilities with the TWFY_CAMERAPREVIEW device,
including setting CAP_XFERCOUNT to –1, indicating that the application wishes to
receive an unlimited number of images.

2. The application send MSG_ENABLEDS (ShowUI == FALSE) to the Source.

3. The Source sends back MSG_XFERREADY and transitions to State 6.

4. The application uses MSG_IMAGENATIVEXFER to transfer the image and the Source
transitions to State 7.

5. The application displays the image.

6. The application uses DAT_PENDINGXFERS / MSG_ENDXFER to transition the
Source to State 6. The application needs to pay attention to the
TW_PENDINGXFERS.Count, but it is expected that it should remain at –1.

7. Go to step (4).

As long as the application and Source are looping from steps (4) through (7) the application
should be displaying a continuous run of snapshots.

Since the application is in complete control, it is implementation dependent on how the user
indicates that a picture should be taken. However, once the decision to take a picture is made,
the steps to do it are as follows…

Taking a Picture:

The application should do the following when it is told to take a picture while in preview
mode.

1. The application sends DAT_PENDINGXFERS / MSG_ENDXFER to the Source,
transitioning from State 7 to State 6 (if necessary).

2. The application sends DAT_PENDINGXFERS / MSG_RESET to the Source,
transitioning from State 6 to State 5.

3. The application sends MSG_DISABLEDS to the Source, transitioning from State 5 to
State 4.

4. The application uses MSG_CHANGEDIRECTORY to switch from the
TWFY_CAMERAPREVIEW device to the TWFY_CAMERA device.

5. The application uses MSG_ENABLEDS (ShowUI == FALSE) to enable the
TWFY|_CAMERA device.

6. The application sends one of the MSG_IMAGExxxxXFER commands to the Source.

7. The source takes the full resolution picture and transfers it back to the application

 TWAIN Articles

TWAIN 1.9a Specification A-519

File System
This section consists of the following:

• Overview
• Rules for path and file names
• File system components
• Rule for root directory
• Rules for image directory
• File Types
• DAT_FILESYSTEM operations
• Thumbnails and Sound snippets
• Context variable
• Condition Codes

Note: The term ‘camera’ is used generically in the specification to describe a device that
captures an image, and is not limited to just devices that employ a camera to
accomplish this.

Overview

Digital cameras and some scanners have the ability to capture images to their own local
storage. When Automatic Capturing is being used an Application need not collect the captured
images until long after their acquisition. A file system is a good representation for the storage
of images (since it is a model that is familiar to most programmers), so TWAIN exposes a
simple file system interface that Applications may browse through in a random fashion.

There is also a need in TWAIN to expose multiple devices through a single Source. Single pass
duplex scanners have multiple cameras that accept different settings. Digital cameras come
with disks and memory expansion cards, and many are able to provide a stream of preview
images. The file system offers a way for a Source to maintain in its root directory a list of the
devices available to an Application.

Appendix A

A-520 TWAIN 1.9a Specification

Rules for Path and File Names

There are two main grouping of files supported by TWAIN; devices, which are associated with
real-time capture, which accept image capture settings, and which are of the form:

/DeviceName

And image path and file names, which are images on local storage which have been previously
captured by the device, and which are of the form (bracketed items are optional):

[/DomainName] [/HostName] /TopDirectory [/Sub-Directory…] /ImageFile

1. A filename consists of any characters except: NUL (0), either of the slashes ‘/’ or ‘\’ and
the colon ‘:’.

2. Sources should at a minimum support the characters: “A-Z a-z 0-9 _ .”

3. The file system should not be case sensitive, though it may show upper and lowercase.

4. Applications should take into consideration that internationalized Sources may
construct filenames from characters within UNICODE.

5. The forward slash ‘/’ and backward slash ‘\’ may be used interchangeably in the
creation of path names. Sources and Applications must support the use of both slashes.
(ex: /abc\xyz).

6. Multiple adjacent slashes reduce to a single slash. (ex: ///\\abc///xyz == /abc/xyz).

7. The root directory is designated as a solitary slash (ex: / or \).

8. The MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY
operations are the only ones that accepts absolute or relative directory paths. All other
operations occur within the current directory.

9. MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY can use
dot ‘.’ to address the current directory (ex: ./abc).

10. MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY can use
dot-dot ‘..’ to address the parent directory (ex: ../abc).

11. In the root directory a MSG_CHANGEDIRECTORY or
AUTOMATICCAPTUREDIRECTORY to dot-dot ‘..’ is the same as dot ‘.’ (ex: /. == /..).

Examples:

\Camera is the same as /Camera
//Camera is the same as /Camera
./Camera is the same as /Camera
../Camera is the same as /Camera

 TWAIN Articles

TWAIN 1.9a Specification A-521

File System Components

A file system consists of the following.

1. A root directory.

2. A camera device (TWFY_CAMERA), which must be the default device when the
Source starts.

3. Zero or more additional devices (TWFY_CAMERATOP, TWFY_CAMERATOP,
TWFY_CAMERAPREVIEW).

4. It is possible for a Source to support multiples of a given device type, for instance a
scanner may support two devices of type TWFY_CAMERA, both with a supporting
TWFY_CAMERATOP and TWFY_CAMERABOTTOM. Use pTW_FILESYSTEM-
>DeviceGroupMask to uniquely identify a camera or to group it with its associated top
and bottom cameras. For example:

Name Type Group

/camera_1 TWFY_CAMERA 0x0001

/camera_1_top TWFY_CAMERATOP 0x0001

/camera_1_bottom TWFY_CAMERABOTTOM 0x0001

/camera_2 TWFY_CAMERA 0x0002

/camera_2_top TWFY_CAMERATOP 0x0002

/camera_2_bottom TWFY_CAMERABOTTOM 0x0002

5. Zero or more directories for storing images (on memory cards, disks, etc…). These are
organized in a hierarchical structure that permits, but does not require the ability to
browse in a network:

A TWFY_DOMAIN directory contains only TWFY_HOST directories

A TWFY_HOST directory contains only TWFY_DIRECTORY directories

A TWFY_DIRECTORY contains TWFY_IMAGE files and/or TWFY_DIRECTORY
directories.

Sources that provide image storage must provide at least one TWFY_DIRECTORY.
TWFY_DOMAIN and TWFY_HOST are optional.

Rules for Root Directory

1. The root directory can only contain devices or directories, not images.

2. The application cannot create, delete, copy into or rename files in the root directory.

3. Files in a directory are not ordered in any fashion (for instance, an Application may not
assume that they are alphabetically sorted). There is one exception to this rule: when
an Application issues a DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
on the root directory, the Source must return a TWFY_CAMERA device. This device is
the designated default capture camera. If an Application begins capability negotiation,
or image capture without accessing DAT_FILESYSTEM, then this is the device that will
be used.

Appendix A

A-522 TWAIN 1.9a Specification

Rules for Image Directory

1. A TWFY_DIRECTORY can contain 0 or more TWFY_DIRECTORYs (sub-directories).

2. Can contain 0 or more TWFY_IMAGE (image files).

3. May be fully accessible, read or write protected.

4. May be created or deleted by an Application, given that it is not in the root directory,
and that it is not protected by the Source.

Context Variable

The reason for the Context variable is that it allows for unconditional mingling of
DAT_FILESYSTEM operations. If there was no Context variable, then Applications would be
more limited in the order of operations that could be performed. For instance, the recursive
directory walk in the code sample would be much harder to accomplish without a Context to
help the Source identify the current directory being accessed by a call to MSG_GETNEXTFILE.

This value is provided solely for the benefit of Source writers. When MSG_GETFIRSTFILE is
called, the Source should record the current directory and the current file and store those
values internally, using Context as a reference to their location. The nature or value of the
Context is dependent on the implementation of the Source, Applications must never attempt to
use or modify the Context. A call to MSG_GETINFO must use this Context to identify the file
being reported. Calls to any of the file transfer methods (MSG_IMAGENATIVEXFER,
MSG_IMAGEFILEXFER, MSG_IMAGEMEMXFER, MSG_AUDIONATIVEXFER,
MSG_AUDIOFILEXFER) must use this Context to determine the data being sent to the
Application. A call to MSG_GETNEXTFILE must use this Context to help obtain the next file
from the directory (this will result in a change in the context as it references the new file). And,
finally, a call to MSG_GETCLOSE releases the memory in the Source associated with this
Context.

 TWAIN Articles

TWAIN 1.9a Specification A-523

Condition Codes

These are some condition codes that apply specifically to file system operations:

TWCC_DENIED File system operation is denied. A Source should report this
condition code if an attempt is made to access a protected file.
Examples of such protection include: any attempt to delete,
rename or copy into the root directory; protected files that are
on the network; and any file that the Source feels it needs to
protect.

TWCC_FILEEXISTS The operation failed because the file already exists. A Source
should report this condition code if an attempt is made to
create a sub-directory with a name that already exists in the
targeted directory; or if an attempt is made to copy or rename
over an existing file or directory.

TWCC_FILENOTFOUND The file was not found. This can occur for a variety of reasons:
attempts to change directory to a path that does not exist;
attempts to delete, rename or copy files that do not exist; as the
condition code from MSG_GETFIRSTFILE for an empty
directory; or MSG_GETNEXTFILE when it finds no more files
in the current directory; and, finally, from MSG_GETINFO if it
is requested to provide information on a file that has been
deleted.

TWCC_NOTEMPTY Operation failed because the directory is not empty. This
condition code is used by the Source if an attempt is made
with the Recursion flag set to FALSE to delete a non-empty
directory.

Appendix A

A-524 TWAIN 1.9a Specification

File Types

The DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY operation is used to
make either a device or a directory current. If a camera device is the target, then all capability
negotiation is with that device and all images come from that device, until a new
MSG_CHANGEDIRECTORY command is issued. If an image directory is selected then the
current device is set to be the root level directory name (i.e., changing to /abc/mno/xyz means
that the current device is /abc).

TWFY_CAMERA Every TWAIN file system must support at least one camera,
which must be the default device on startup. This is for
compatibility with pre 1.8 applications as well as post 1.8
applications that do not choose to make use of the file system.
On single pass duplex scanners, this camera device is used to
simultaneously set values for the top and bottom cameras.
During the capturing of images (in duplex mode) it sends a
stream of images in the order: TOP, BOTTOM, TOP…

TWFY_CAMERATOP / TWFY_CAMERABOTTOM

 Single pass duplex scanners may opt to provide independent
access to the top and bottom cameras. A device with one of
these file types controls the settings for the specified camera. If
this device is the current device at the time image capture
commences, then only images from that camera will be passed
to the Application. This means that even if a device is set for
duplex scanning, if the current device has a file type of
TWFY_CAMERATOP, then only top images will be passed to
the Application.

TWFY_CAMERAPREVIEW

 A logical device that performs camera live preview
functionality. When implementing the Source for this logical
device, related capabilities must be negotiated to perform
preview specific functions. Among them,
ICAP_XRESOLUTION and ICAP_YRESOLUTION must be
implemented to specify the preview image sizes. Other
capabilities may be available in some sources, such as
ICAP_ZOOMFACTOR and ICAP_FLASHUSED2.

 TWAIN Articles

TWAIN 1.9a Specification A-525

TWFY_DIRECTORY At the root directory level files of this type should correspond
to a physical piece of hardware (a memory card or a disk). The
root directory is only allowed to contain devices. Sub-
directories may only contain image files or more sub-
directories. Access to files and directories is controlled by the
Source, so Applications should check all operations and watch
out for condition codes such as TWCC_DENIED.

TWFY_IMAGE Any directory, except root, may contain image files. The
DAT_FILESYSTEM messages MSG_GETFIRSTFILE and
MSG_GETNEXTFILE select the current image. Once an image
has been selected, it may be transferred in the same fashion
used to acquire images from a camera. Note: this file type is
reserved for full resolution images, see the section on
Thumbnails for information on how to acquire them.

DAT_FILESYSTEM Operations

MSG_AUTOMATICCAPTUREDIRECTORY

 Selects the directory to be used to store images acquired by
automatic capture.

MSG_CHANGEDIRECTORY

 Selects the device or image subdirectory. Use this to select
between direct camera (scanner) control, and browsing of
stored images. All capabilities negotiated and triplet
operations are with the current device (directory), until this
value is changed by the Application.

MSG_COPY Copies the specified file from one directory to another. If the
Recursive flag is TRUE and the file type specified is
TWFY_DIRECTORY then that directory and all the files and
directories under it are copied. The Application cannot copy
files into the root directory.

MSG_CREATEDIRECTORY

 Creates a new image subdirectory. The Application cannot
create files in the root directory.

MSG_DELETE Deletes the specified file. If the Recursive flag is TRUE and the
file type specified is TWFY_DIRECTORY, then all the files
under that directory are deleted. The Application cannot
delete files in the root directory.

MSG_FORMATMEDIA Formats the currently selected storage device. Use with
caution.

Appendix A

A-526 TWAIN 1.9a Specification

MSG_GETCLOSE Closes the Context created by MSG_GETFIRSTFILE.

MSG_GETFIRSTFILE Creates a Context that points to the first file in a directory.
This Context is used by MSG_GETINFO,
MSG_GETNEXTFILE, MSG_GETCLOSE; and for files of type
TWFY_IMAGE all image transfer related operations
performed in states 6 and 7 use the image pointed to by this
Context (i.e., DAT_IMAGEINFO, DAT_IMAGEMEMXFER,
etc…).

MSG_GETINFO Returns information about a device, directory or image file.

MSG_GETNEXTFILE Updates the Context to point to the next file in the directory.

MSG_RENAME Renames a directory or an image file. If the directories differ,
then it moves the file as well, creating it in the new location
and deleting it from the old location. Files in the root directory
cannot be renamed by the Application.

Thumbnails and Sound Snippets

TWAIN is primary concerned with the acquisition of images, so the file system does not contain
thumbnail files or sound files, since these kinds of data are expected to be associated with
image files. This simplifies an Application’s browsing of the file system, since it need only
concern itself with one type of data file (TWFY_IMAGE), and does not have to trace associated
data files.

Sources must filter out non-image files, if the device stores thumbnail and sound data
independent of the image files. For instance, if a device stores the following files:

IMAGE001.TIF
IMAGE001_THUMBNAIL.TIF
IMAGE001_SOUND.WAV

The file system must only report the existence of IMAGE001.TIF

An Application obtains the thumbnail for an image by setting ICAP_THUMBNAILSENABLED
to TRUE; the same filename is used for both the full resolution and thumbnail versions of an
image. By setting ICAP_THUMBNAILSENABLED, the Application decides which version of
the image it receives.

Sound snippets are also associated with image files, unlike thumbnails it is possible for a single
image file to own several sound snippets. An Application can get the number of snippets that
an image owns, and then, during image transfer, the Application has the option to transfer any
number of those snippets. It is also possible to collect the snippets for an image without
transferring the image data.

 TWAIN Articles

TWAIN 1.9a Specification A-527

Sample Recursive Directory Walk

The following is a sample recursive directory walk.
// This Application function walks through all the files in a Source’s
// file system, counting the file types file system, counting the file
// types it finds. It is intended only as a sample, error checking is
// omitted to simplify the code.

typedef struct {
int Devices;
int Directories;
int Images;

} t_Counters;

TW_UINT16 DirectoryWalk(TW_FILESYSTEM *fsArg, t_Counters *Counters)
{

TW_UINT16 rc; TW_FILESYSTEM fs;

// Caller has set fsArg->InputFile to some value, such as “/”…
rc = (*DS_Entry) (&app,&src,DG_CONTROL,DAT_FILESYSTEM,

MSG_CHANGEDIRECTORY, fsArg);

// We do GETFIRSTFILE first in each new directory, GETNEXTFILE for all
// subsequent calls…
for (rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,

MSG_GETFIRSTFILE,&fs);
rc == TWRC_SUCCESS;

rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM
,MSG_GETNEXTFILE,&fs)) {

// Count the appropriate file type…
switch (fs.FileType) {

default: Counters->Devices += 1; break;
case TWFY_IMAGE: Counters->Images += 1; break;
case TWFY_DOMAIN:
case TWFY_HOST:
case TWFY_DIRECTORY:

Counters->Directories += 1;
// Recursively step into this directory, looking for more
// stuff…
rc = DirectoryWalk(&fs,&Counters);
if (rc != TWRC_SUCCESS) {

rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,
MSG_GETCLOSE,&fs);

return(rc);
}
break;

}
}

Appendix A

A-528 TWAIN 1.9a Specification

// Cleanup and return…
rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,MSG_GETCLOSE,&fs);
return(TWRC_SUCCESS);

}

// Using this function…
TW_UINT16 rc;
TW_FILESYTEM fs;
t_Counters Counters;
memset(&fs,0,sizeof(fs));
memset(&Counters,0,sizeof(Counters));
strcpy(fs.InputFile,”/”); // start at root…
rc = DirectoryWalk(&fs,&Counters);

Internationalization
A TWAIN Source can easily be internationalized despite its 8-bit character interface. A well
designed Source should automatically match the locale of the application calling it; passing
localized data through the API, and displaying appropriate language text in its user interface.
Developers have the option of using UNICODE or MultiByte encodings, the 8-bit interface is
not an obstacle to Applications or Sources.

When an Application calls DG_CONTROL / DAT_IDENTITY / MSG_OPENDS, it provides to
the Source its TW_IDENTITY data. Internationalized Sources should check the appIdentity-
>Version.Language field, and attempt to match the Application’s language (returning the same
value in the dsIdentity structure). If the Source is incapable of matching the language, then it
should attempt to match the User’s current locale (on Win32 do this using the
LOCALE_USER_DEFAULT value returned by the GetLocaleInfo() call). In most cases the
Application locale and the User locale will be the same, and the Source will have to select the
best language it can. For instance, if the Application requested Swiss French, and the Source
only has French, then it should offer that. Otherwise, it should resort to some common
secondary language, such as English.

Please note that DG_CONTROL / DAT_IDENTITY / MSG_OPENDS is the very first
opportunity that an Application and Source have to negotiate language. DG_CONTROL /
DAT_IDENTITY / MSG_GET, when invoked in state 3, does not provide an appIdentity.
Sources should default to the LOCALE_USER_DEFAULT in this instance.

As mentioned above, the TWAIN interface assumes 8-bit characters, this prevents the direct
passing of UNICODE data between Sources and Applications, but it does not hinder indirect
means that convert data into MultiByte encodings. The remainder of this section shows one
way of allowing Sources and Applications to communicate, without worrying about whether
they are UNICODE or MultiByte enabled. The best example to illustrate this is to consider a
Source and Application, both UNICODE enabled, communicating through the TWAIN
interface.

 TWAIN Articles

TWAIN 1.9a Specification A-529

To pass UNICODE string data from the Source to the Application, the Source must convert
UNICODE to MultiByte, using the appropriate Code-Page (which is specific to a given set of
locales). When the Application receives the data, it converts from MultiByte back to
UNICODE. The process is the same when sending string data from the Application to the
Source. The process depends on the Application and Source using the same Code-Page for
their conversion. The Win32 functions required to perform the conversions are
WideCharToMultiByte and MultiByteToWideChar. The only limitation to watch out for is the
size of the various strings provided by TWAIN. At all times the MultiByte data must fit within
the strings described by the interface, and Source and Application writers need to pay close
attention to it.

int WideCharToMultiByte(
UINT CodePage, // code page
DWORD dwFlags, // performance and mapping flags
LPCWSTR lpWideCharStr, // address of wide-character string
int cchWideChar, // number of characters in string
LPSTR lpMultiByteStr, // address of buffer for new string
int cchMultiByte, // size of buffer
LPCSTR lpDefaultChar, // address of default for unmappable characters
LPBOOL lpUsedDefaultChar // address of flag set when default char. used
);

int MultiByteToWideChar(
UINT CodePage, // code page
DWORD dwFlags, // character-type options
LPCSTR lpMultiByteStr, // address of string to map
int cchMultiByte, // number of characters in string
LPWSTR lpWideCharStr, // address of wide-character buffer
int cchWideChar // size of buffer
);

These functions are fully described in the online Microsoft Visual C++ documentation. This
section does not attempt to duplicate that information, but does show how Source and
Application may cooperate when using them to transmit localized data through the TWAIN
interface.

Appendix A

A-530 TWAIN 1.9a Specification

TWAIN CAP_LANGUAGE Code to ANSI Code-Page Table
// This array maps TWAIN CAP_LANGUAGE codes to the appropriate ANSI Code-
// Page. There is no mechanism for converting to the OEM Code-Page, nor
// should one be needed, since the upper 128 bytes in the OEM pages mostly
// contain line art characters used by MS-DOS.
// Note: the index in the comment field is just an index into the array,
// it does not correspond to the TWAIN constant for a given TWLG field…
//

#define AnsiCodePageElements 88
int AnsiCodePage[AnsiCodePageElements] = {

1252, // 0 TWLG_DANISH (TWLG_DAN)
1252, // 1 TWLG_DUTCH (TWLG_DUT)
1252, // 2 TWLG_ENGLISH (TWLG_ENG)
1252, // 3 TWLG_FRENCH_CANADIAN (TWLG_FCF)
1252, // 4 TWLG_FINNISH (TWLG_FIN)
1252, // 5 TWLG_FRENCH (TWLG_FRN)
1252, // 6 TWLG_GERMAN (TWLG_GER)
1252, // 7 TWLG_ICELANDIC (TWLG_ICE)
1252, // 8 TWLG_ITALIAN (TWLG_ITN)
1252, // 9 TWLG_NORWEGIAN (TWLG_NOR)
1250, // 10 TWLG_PORTUGUESE (TWLG_POR)
1252, // 11 TWLG_SPANISH (TWLG_SPA)
1252, // 12 TWLG_SWEDISH (TWLG_SWE)
1252, // 13 TWLG_ENGLISH_USA (TWLG_USA)
1252, // 14 TWLG_AFRIKAANS
1250, // 15 TWLG_ALBANIA
1256, // 16 TWLG_ARABIC
1256, // 17 TWLG_ARABIC_ALGERIA
1256, // 18 TWLG_ARABIC_BAHRAIN
1256, // 19 TWLG_ARABIC_EGYPT
1256, // 20 TWLG_ARABIC_IRAQ
1256, // 21 TWLG_ARABIC_JORDAN
1256, // 22 TWLG_ARABIC_KUWAIT
1256, // 23 TWLG_ARABIC_LEBANON
1256, // 24 TWLG_ARABIC_LIBYA
1256, // 25 TWLG_ARABIC_MOROCCO
1256, // 26 TWLG_ARABIC_OMAN
1256, // 27 TWLG_ARABIC_QATAR
1256, // 28 TWLG_ARABIC_SAUDIARABIA
1256, // 29 TWLG_ARABIC_SYRIA
1256, // 30 TWLG_ARABIC_TUNISIA
1256, // 31 TWLG_ARABIC_UAE /* United Arabic Emirates */
1256, // 32 TWLG_ARABIC_YEMEN
1252, // 33 TWLG_BASQUE
1251, // 34 TWLG_BYELORUSSIAN
1251, // 35 TWLG_BULGARIAN
1252, // 36 TWLG_CATALAN
936, // 37 TWLG_CHINESE
950, // 38 TWLG_CHINESE_HONGKONG
936, // 39 TWLG_CHINESE_PRC /* People's Republic of China */
936, // 40 TWLG_CHINESE_SINGAPORE
936, // 41 TWLG_CHINESE_SIMPLIFIED
950, // 42 TWLG_CHINESE_TAIWAN
950, // 43 TWLG_CHINESE_TRADITIONAL

 TWAIN Articles

TWAIN 1.9a Specification A-531

1250, // 44 TWLG_CROATIA
1250, // 45 TWLG_CZECH
1252, // 46 TWLG_DUTCH_BELGIAN
1252, // 47 TWLG_ENGLISH_AUSTRALIAN
1252, // 48 TWLG_ENGLISH_CANADIAN
1252, // 49 TWLG_ENGLISH_IRELAND
1252, // 50 TWLG_ENGLISH_NEWZEALAND
1252, // 51 TWLG_ENGLISH_SOUTHAFRICA
1252, // 52 TWLG_ENGLISH_UK
1257, // 53 TWLG_ESTONIAN
1250, // 54 TWLG_FAEROESE
1256, // 55 TWLG_FARSI
1252, // 56 TWLG_FRENCH_BELGIAN
1252, // 57 TWLG_FRENCH_LUXEMBOURG
1252, // 58 TWLG_FRENCH_SWISS
1252, // 59 TWLG_GERMAN_AUSTRIAN
1252, // 60 TWLG_GERMAN_LUXEMBOURG
1252, // 61 TWLG_GERMAN_LIECHTENSTEIN
1252, // 62 TWLG_GERMAN_SWISS
1253, // 63 TWLG_GREEK
1255, // 64 TWLG_HEBREW
1250, // 65 TWLG_HUNGARIAN
1252, // 66 TWLG_INDONESIAN
1252, // 67 TWLG_ITALIAN_SWISS
932, // 68 TWLG_JAPANESE
949, // 69 TWLG_KOREAN

1361, // 70 TWLG_KOREAN_JOHAB
1257, // 71 TWLG_LATVIAN
1257, // 72 TWLG_LITHUANIAN
1252, // 73 TWLG_NORWEGIAN_BOKMAL
1252, // 74 TWLG_NORWEGIAN_NYNORSK
1250, // 75 TWLG_POLISH
1252, // 76 TWLG_PORTUGUESE_BRAZIL
1250, // 77 TWLG_ROMANIAN
1251, // 78 TWLG_RUSSIAN
1250, // 79 TWLG_SERBIAN_LATIN
1250, // 80 TWLG_SLOVAK
1250, // 81 TWLG_SLOVENIAN
1252, // 82 TWLG_SPANISH_MEXICAN
1252, // 83 TWLG_SPANISH_MODERN
874, // 84 TWLG_THAI

1254, // 85 TWLG_TURKISH
1251, // 86 TWLG_UKRANIAN
};

Appendix A

A-532 TWAIN 1.9a Specification

Sample Converting from WideChar to MultiByte

The following is a sample of converting from WideChar to MultiByte.
// This function converts _TCHAR* strings to MultiByte, using the
// appropriate code page. If the build is ANSI or MBCS, then no
// conversion is needed, the _tcsncpy() function is used.
// If the build is UNICODE, then the Code-Page is determined, and used to
// convert the string to MultiByte using the WideCharToMultiByte()
// function…
//

int CopyTCharToMultibyte
(char *dst,
const int sizeof_dst,
const _TCHAR *src,
const int twain_language_code)

{

#ifndef _UNICODE
// MultiByte string copy…
_tcsncpy(dst,src,sizeof_dst);
dst[sizeof_dst-1] = 0;
return(strlen(dst));

#else
int cp;
int len;
_TCHAR cp_str[16];
if (twain_language_code >= AnsiCodePageElements) {

// Whoops, don’t have one of those…
return(-1);

} else if (twain_language_code >= 0) {
// Lookup the code page…
cp = AnsiCodePage[twain_language_code];

} else {
// Get the User’s code page…
GetLocaleInfo

(LOCALE_USER_DEFAULT,
LOCALE_IDEFAULTANSICODEPAGE,
cp_str,
sizeof(cp_str));

cp = _ttoi(cp_str);
}
if (IsValidCodePage(cp) == 0) {

// That code page isn’t installed on this system…
return(-1);

}

 TWAIN Articles

TWAIN 1.9a Specification A-533

len = WideCharToMultiByte(
cp, // code page
0, // performance and mapping flags
src, // address of wide-character string
-1, // number of characters in string
dst, // address of buffer for new string
sizeof_dst, // size of buffer (in characters)
NULL, // address of default for unmappable characters
NULL // address of flag set when default char. used

);

#endif
}

Sample Converting from MultiByte to WideChar

The following is a sample of converting from MuliByte to WideChar.
// This function converts multibyte strings to _TCHAR* strings, using
// the appropriate code page.
// If the build is ANSI or MBCS, then no conversion is needed, the
// _tcsncpy() function is used. If the build is UNICODE, then the
// Code-Page is determined, and used to convert the string to
// _TCHAR* using the MultiByteToWideChar() function…
//

int CopyMultibyteToTChar
(_TCHAR *dst,
const int sizeof_dst,
const char *src,
const int twain_language_code)

{
#ifndef _UNICODE

// MultiByte string copy…
_tcsncpy(dst,src,sizeof_dst);
dst[sizeof_dst-1] = 0;
return(strlen(dst));

#else
int cp;
int len;
_TCHAR cp_str[16];
if (twain_language_code >= AnsiCodePageElements) {

// Whoops, don’t have one of those…
return(-1);

} else if (twain_language_code >= 0) {
// Lookup the code page…
cp = AnsiCodePage[twain_language_code];

} else {
// Get the User’s code page…
GetLocaleInfo

(LOCALE_USER_DEFAULT,
LOCALE_IDEFAULTANSICODEPAGE,
cp_str,
sizeof(cp_str));

cp = _ttoi(cp_str);
}

Appendix A

A-534 TWAIN 1.9a Specification

if (IsValidCodePage(cp) == 0) {
// That code page isn’t installed on this system…
return(-1);

}
len = MultiByteToWideChar(

cp, // code page
0, // performance and mapping flags
src, // address of wide-character string
-1, // number of characters in string
dst, // address of buffer for new string
sizeof_dst/sizeof(_TCHAR) // size of buffer (in characters)

);
return(len);

#endif
}

Sample Use of the Conversion Functions

The following are examples of UNICODE application and UNICODE source.

UNICODE Application

int sts;
int twain_language_code;
_TCHAR Author[128];
pTW_ONEVALUE pvalOneValue;
. . .
// the Application has queried the Source as to what languages it supports
//and selected TWLG_JAPANESE, storing it in twain_language_code…
. . .
// CAP_AUTHOR is queried, and a value is received…
. . .
// Convert CAP_AUTHOR string to UNICODE…
sts = CopyMultiByteToTChar

(Author,
sizeof(Author),
(char*)&pvalOneValue->Item,
twain_language_code)

if (sts < 0) {
// Error…

. . .
}

 TWAIN Articles

TWAIN 1.9a Specification A-535

UNICODE Source

. . .
int sts;
int source_language_code;
_TCHAR SourceAuthor[128];
pTW_ONEVALUE pvalOneValue;
. . .
// the Source has been told to use TWLG_JAPANESE, it stores this value
// in source_language_code …
. . .
// CAP_AUTHOR is queried by the Application…
// The Source keeps the value in SourceAuthor…
. . .
// Convert CAP_AUTHOR string to multibyte…

sts = CopyTCharToMultibyte
((char*)&pvalOneValue->Item,
sizeof(TW_STR128),
SourceAuthor,
source_language_code)

if (sts < 0) {
// Error…
. . .

}
. . .
// The Source returns the value to the Application…

Audio Snippets
Digital Cameras have the ability to acquire audio snippets along with an image. To support
this TWAIN 1.8 provides a new data group, DG_AUDIO. Because TWAIN is image-centric,
DG_AUDIO operations are dependent on an image context, audio snippets must be associated
with an image. When a Source enters into state 6, the Application can opt to transfer any and
all audio snippets. The steps required to obtain audio snippets deliberately parallel the steps
required to transfer images, to reduce the effort to learn how to access this new kind of data.

The following Data Argument Types (DATs) are supported by DG_AUDIO:

DAT_AUDIOFILEXFER transfer audio in file format
DAT_AUDIOINFO info about an audio snippet
DAT_AUDIONATIVEXFER transfer audio in native format

Appendix A

A-536 TWAIN 1.9a Specification

The following DG_CONTROL (DATs) are supported when DAT_XFERGROUP is set to
DG_AUDIO, DATs not mentioned in this list must return TWRC_FAILURE /
TWCC_BADPROTOCOL:

DAT_CAPABILITY no changes to its operation
DAT_EVENT no changes to its operation
DAT_IDENTITY no changes to its operation
DAT_NULL no changes to its operation
DAT_PASSTHRU no changes to its operation
DAT_PENDINGXFERS reports number of snippets remaining to be transferred,

MSG_ENDXFER and MSG_RESET do not cause the
Source to drop to State 5.

DAT_SETUPFILEXFER selects the audio file format
DAT_SETUPFILEXFER2 selects the audio file format
DAT_STATUS no changes to its operation
DAT_USERINTERFACE no changes to its operation
DAT_XFERGROUP MSG_SET, MSG_GETDEFAULT and

MSG_GETCURRENT added to allow switching between
data groups. The default value for MSG_GETDEFAULT
must be DG_IMAGE. And when the Source starts up,
MSG_GETCURRENT must report DG_IMAGE as the
current data group, to maintain compatibility with pre-
TWAIN 1.8 Applications.

The following capabilities support audio; all capabilities are negotiable at all times (at least in
state 4), independent of the current setting of DAT_XFERGROUP:

ACAP_AUDIOFILEFORMAT negotiate available audio file formats
ACAP_XFERMECH negotiate audio snippet transfer mechanism

Collecting Audio Snippets

The transfer of an audio snippet was designed to be used when an Application is browsing
through a selection of stored images. There is nothing to prevent the transfer of audio when an
image is captured in real-time, though TWAIN does require that any audio snippets be
transferred before the image is transferred.

A typical transfer may occur in the following way: An Application is browsing through storage
managed by the TWAIN Source using MSG_GETFILEFIRST / MSG_GETFILENEXT (see
DAT_FILESYSTEM), and finds an image that it wants to work with. The Application enters
state 6 by calling DG_CONTROL / DAT_IDENTITY / MSG_ENABLEDS. If the Application
wants to find out if there are any audio snippets associated with the image, it can call
DG_AUDIO / DAT_AUDIOINFO / MSG_GET. In this example it finds in the
TW_AUDIOINFO structure that this image file has three audio snippets associated with it. The
Application wants the second audio snippet, so it calls DG_CONTROL / DAT_XFERGROUP /
MSG_SET and sets the data group to DG_AUDIO. This call changes the context of the Source,
it is now set up to transfer audio data. One effect of this is that a call to DG__CONTROL /
DAT_PENDINGXFERS / MSG_GET will report the number of audio snippets (for this image)
that remain to be transferred. Because the Application wants the second audio snippet, it must
discard the first one, and does this by making a call to DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER. The snippet that it wants is now available to be
transferred, and it does this with a call to DG_AUDIO / DAT_AUDIONATIVEXFER /

 TWAIN Articles

TWAIN 1.9a Specification A-537

MSG_GET. The Source moves up into state 7. The Application ends the transfer with a call to
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.

Because the Application only wanted the second audio snippet, it can return to DG_IMAGE by
making a call to DG_CONTROL / DAT_XFERGROUP / MSG_SET. Once this is done, all other
commands work in a traditional TWAIN fashion. The Application can opt to transfer or
discard the image, even though it did not transfer all of the audio snippets.

There is one more thing to note, if the Application had read the third audio snippet, or if it had
issued the DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET command while in
DG_AUDIO, the state of the Source would remain at state 6. TWAIN works this way because it
is image-centric, the only way to transition from state 6 to state 5 is when it is determined that
there are no more images to transfer.

Notes

1. TWAIN 1.8 supports native and file transfers of audio snippets. Buffered mode
transfers are not supported, because TWAIN does not have the necessary infrastructure
to describe audio data, and it was decided that adding that structure in this release
would be overly complex, and probably incomplete.

2. As a general rule, even though many operations are possible with DAT_XFERGROUP
set to DG_AUDIO, Applications are encouraged to only change to DG_AUDIO for the
length of time it takes to collect an audio snippet, and to stay in DG_IMAGE mode at
all other times.

3. Though TWAIN is image-centric, it is possible to envision a TWAIN Source that is only
capable of supporting DG_AUDIO. The TWAIN Working Group feels that any such
notion is a bad idea, and encourages anyone thinking of doing this to pick on some
other API.

Appendix A

A-538 TWAIN 1.9a Specification

How to use the Preview Device
Application Switch to the Preview Logical Device

1. The application first tries to switch to the preview logical device using the
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY triplet with
TWFY_CAMERAPREVIEW set in InputName field of TW_FILENAME structure. If the
returned value is TW_SUCCESS, the application can proceed.

2. After the application successfully switches to the preview device, all subsequent
capability negotiation is with the preview device.

3. The application queries the Source with capability CAP_CAMERAPREVIEWUI. If it
returns SUCCESS, then the Source is able to assume the responsibility of displaying
preview images. The application can choose to use the Source’s UI or not when it issues
the MSG_ENABLEDS. If the application uses the Source’s UI, it will do nothing but
wait to issue MSG_DISABLEDS, or wait for a MSG_CLOSEDSREQ from the Source to
stop the preview mode. If the application does not use the Source’s UI or the Source
does not provide a UI, then the application should follow the following steps.

Setting Up Environments for Preview Mode

4. The application starts negotiation on the Preview size using the ICAP_XRESOLUTION
and ICAP_YRESOLUTION capabilities with MSG_GET first. With the returned
supported sizes from the Source, the application can set the selected preview sizes
using the ICAP_XRESOLUTION and ICAP_YRESOLUTION capabilities with
MSG_SET. These two capabilities should be linked through
ICAP_XYRESOLUTIONLINKED.

5. Optionally, the application can negotiate the zoom lens value, camera flash state during
previewing, etc, with available capabilities such as ICAP_ZOOMFACTOR,
ICAP_FLASHUSED2. If application queries for capabilities that are not related to
preview device, Source will return TWRC_FAILURE.

Start Getting and Displaying Preview Thumbnails

6. The application can use the automatic capture feature with CAP_XFERCOUNT to -1
(Application is willing to transfer multiple images).

7. Application issues MSG_ENABLEDS to move to state 5. Upon receiving this message,
the Source should start capturing images1.

8. Source issues MSG_XFERREADY, indicating that an image is present, and state moves
to 6.

1 The Source takes a picture as soon as it receives MSG_ENABLEDS and each time it receives MSG_ENDXFER

 TWAIN Articles

TWAIN 1.9a Specification A-539

LOOP:

9. Application issues DAT_IMAGENATIVEXFER to get image and goes to state 7.

10. Application issues MSG_ENDXFER to return to state 6, and it displays the image. Then
if it wants the next preview image, examines pTW_PENDINGXFERS->Count to verify
that there is another image, and it goes to LOOP. Source, upon receiving the
MSG_ENDXFER message, takes the next picture and returns -1 in the
pTW_PENDINGXFERS->Count.

END LOOP

11. If the application wants to end preview mode, it issues DAT_PENDINGXFERS /
MSG_RESET. This forces the Source to go to state 5 (CAP_XFERCOUNT is set to 0). If
the Source is unable to deliver preview images, it sets pTW_PENDINGXFERS->Count
to 0 in reply to the application’s MSG_ENDXFER command, and returns to state 5.

12. The application can then issue MSG_DISABLEDS, which returns it to state 4, and now
the application can use DG_CONTROL / DAT_FILESYSTEM /
MSG_CHANGEDIRECTORY to change directory to the camera device to take a full
resolution picture.

How to Take a Snapshot from Preview Scene

1. The application could provide a button or menu item for the user to take a snapshot
from the preview scene, for example, a “Take Picture” button. In response to this, the
application should use the triplet DG_CONTROL / DAT_FILESYSTEM /
MSG_CHANGEDIRECTORY with TWFS_CAMERA set in the TW_FILENAME
structure to stop the preview mode.

2. Subsequently, the application can use the automatic capture feature with
CAP_XFERCOUNT to 1, CAP_TIMEBEFOREFIRSTCAPTURE to 0 and
CAP_AUTOMATICCAPTURE set to 1 to initiate the capture of preview snapshot.

3. When the Source receives the CAP_AUTOMATICCAPTURE, it should capture the
preview snapshot, and inform the application with MSG_XFERREADY when it is
ready to transfer.

4. After receiving the MSG_XFERREADY, the application should use one of the three
standard image transfer methods to transfer the captured image from the Source to the
application.

5. At the end of this operation, the application has the option of going back to the preview
thumbnail loop.

Appendix A

A-540 TWAIN 1.9a Specification

Imprinter / Endorser
Scanners intended for document imaging sometimes include accessories that let the scanner
print data on the documents as it scans them. TWAIN provides basic functionality to negotiate
capabilities for imprinter / endorser devices. An imprinter is a general term for any document-
printing device. An endorser is more specialized, and is primarily intended as proof of
scanning. In addition to the type of printing device, TWAIN offers ways to locate the printer
on the scanning path: top or bottom of the sheet of paper, before or after the paper has been
scanned. It is the responsibility of the Source to provide the available combinations to the
Application. It is the responsibility of the Application to enable the printers that it wants to use,
and to establish seed values prior to scanning.

This is a context sensitive scheme, Applications use CAP_PRINTER to discover what printers
are available to the Source, and to select each of those printers for negotiation.

CAP_PRINTERENABLED determines whether or not a given printer will be used when
scanning begins; a value of TRUE indicates that it will be used, a value of FALSE that it will not
be used. Applications must enable a printer before negotiating the seed values.

CAP_INDEX describes an index that counts by ones for every image seen by a given printer.

CAP_PRINTERMODE selects one of three options: print one line of text from
CAP_PRINTERSTRING, or multiple lines from CAP_PRINTERSTRING, or a compound string
constructed (in order) from CAP_PRINTERSTRING, CAP_PRINTERINDEX and
CAP_PRINTERSUFFIX.

CAP_PRINTERSTRING specifies the base message to be printed. For compound strings, the
CAP_PRINTERSTRING serves as the prefix to the CAP_PRINTERINDEX.

CAP_PRINTERSUFFIX is only available for compound strings, and describes the text (if any)
that is to follow the CAP_PRINTERINDEX.

Example of Use:

Consider a Source that supports two CAP_PRINTERs:

TWPR_IMPRINTERTOPBEFORE
TWPR_IMPRINTERBOTTOMBEFORE

The Application then:

• uses CAP_PRINTER to discover the two printers

• sets CAP_PRINTER to TWPR_IMPRINTERTOPBEFORE
! sets CAP_PRINTERENABLED to TRUE (turning this printer on)
! sets CAP_PRINTERMODE to TWPM_SINGLESTRING
! sets CAP_PRINTERSTRING to a string containing today’s date

• sets CAP_PRINTER to TWPR_IMPRINTERBOTTOMBEFORE
! sets CAP_PRINTERENABLED to TRUE (turning this printer off)

Note that the value of CAP_PRINTER is not important at the time of scanning, it is the other
capabilities that control the imprinter, like CAP_PRINTERENABLED; CAP_PRINTER only
selects the current printer under negotiation.

 TWAIN Articles

TWAIN 1.9a Specification A-541

Capability Ordering
As the number of capabilities described by TWAIN has increased it has become clear that there
are dependencies between many of them. In some cases these dependencies are not likely to
be critical, for example if ICAP_CCITTKFACTOR is set to some non-zero value, and
ICAP_COMPRESSION is not TWCP_GROUP32D, most scanners will not see this as a problem.
On the other hand, if ICAP_COMPRESSION is set to TWCP_JPEG and ICAP_XFERMECH is
set to TWSX_NATIVE then it is extremely unlikely that the Application will get useable image
data.

It is the responsibility of the Source to properly constrain itself according to the current settings
of all of its capabilities. Doing so has the following benefits:

1. The Source protects itself from illegal configurations.

2. The Source reports to the Application through constraints and the
TWCC_CAPSEQERROR condition code which capabilities are fully, partially or
currently not negotiable.

It is the responsibility of the Application to negotiate capabilities in the proper order. Doing so
has the following benefits:

1. The Application protects itself from illegal configurations.

2. The Application can use constraints and occurrences of TWCC_CAPSEQERROR to
modify the behavior of its user interface, better representing the Source’s capabilities to
the user.

The reset of this article is written in the order of negotiation that an Application should use to
control a Source.

Language Support

The first thing the Source and Application should negotiate is the language. This negotiation
best occurs as part of the DG_CONTROL / DAT_PARENT / MSG_OPENDS call. The
Application reports the language it is using in appIdentity->Version.Language. The Source
should attempt to try to match this language. If it cannot, it should attempt to match the
language that the user logged in with. If this fails then is should pick the best language that it
can. For those Sources that support CAP_LANGUAGE the Application has a further
opportunity to try and get a good language match, and this should be done as soon as the
Source is successfully opened.

Duplex Control

If an Application finds that CAP_DUPLEX exists and it indicates that duplex scanning is
supported, then the Application should negotiate CAP_DUPLEXENABLED. If
CAP_DUPLEXENABLED is set to FALSE, then DAT_FILESYSTEM capable Sources should not
report any TWFY_CAMERABOTTOM devices in the root directory. If the Source is set to a
TWFY_CAMERABOTTOM device at the time that CAP_DUPLEXENABLED is set to FALSE,
then it should automatically change itself to the corresponding TWFY_CAMERATOP device.

Appendix A

A-542 TWAIN 1.9a Specification

Device Negotiation

If the Source supports DAT_FILESYSTEM, then the Application needs to walk through the root
directory to determine what devices are available, if it wants to independently control the
individual devices. Sources are required to default to the TWFY_CAMERA device (the implied
default for Sources that do not support DAT_FILESYSTEM). If an Application negotiates
capabilities using this device, then the Source is expected to apply the settings to as many of its
applicable devices as possible. For instance, in a duplex scanner changing the value of
ICAP_BRIGHTNESS for the default TWFY_CAMERA device will change the settings of its
corresponding TWFY_CAMERATOP and TWFY_CAMERABOTTOM. Once the list of devices
has been identified, the Application may optionally change to one of them using
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRCTORY.

Supported Capabilities

Applications are encouraged to use this call to get the capabilities supported by a Source, since
this information can be used to quickly characterize the device. For instance, a Source that
supports ICAP_FLASH2 is more likely to be a digital camera than a scanner. Or in another
case, a single-pass duplex scanner that supports DAT_FILESYSTEM access to both of its
cameras might not support all the same capabilities for both cameras.

Extended Capabilities

This is an appropriate time to negotiate the extended capabilities CAP_EXTENDEDCAPS as
indicated by CAP_SUPPORTEDEXTCAPS (ones that are settable in state 6), though there is no
implied dependency in locating it here.

Feeder Control

ICAP_FEEDERENABLED is the key capability to determine if a Source supports an automatic
document feeder (ADF). Once this value has been determined no special ordering is required
to test most of the other values, although there are groupings worth noting. Some ADFs
provide control over individual sheets of paper: CAP_CLEARPAGE, CAP_FEEDPAGE,
CAP_REWINDPAGE. Some ADFs are supported by memory buffers built into the device:
CAP_AUTOSCAN, CAP_MAXBATCHBUFFERS. Some ADFs are capable of detecting the
presence of paper in the input bin: CAP_PAPERDETECTABLE, CAP_FEEDERLOADED.

Frame Management

Before negotiating frame information an Application should first establish the unit of
measurement using ICAP_UNITS. It should establish the ICAP_XRESOLUTION and
ICAP_YRESOLUTION of the image, especially if TWUN_PIXEL is supported, since the
reported values should vary with the pixel density. After that the Application should
determine the physical limits of the Source using ICAP_MINIMUMHEIGHT,
ICAP_MINIMUMWIDTH, ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

DAT_IMAGELAYOUT is required by all Sources. Most scanners support
ICAP_SUPPORTEDSIZES (unlike digital cameras, which tend to not support physical
measurements like inches and centimeters).

ICAP_SUPPORTEDSIZES is required to set itself to TWSS_NONE if frames are negotiated
using either DAT_IMAGELAYOUT or ICAP_FRAMES.

 TWAIN Articles

TWAIN 1.9a Specification A-543

ICAP_MAXFRAMES will report how many frames ICAP_FRAMES is capable of delivering per
captured item.

ICAP_ORIENTATION is intended to tell a Source how the orientation of a sheet of paper fed
into the scanner varies from the settings of its frame information. ICAP_ROTATION is a
specific request to the scanner to rotate the scanned image the indicated number of degrees. In
neither case should these capabilities affect anything but the output from DAT_IMAGEINFO.
The reason for negotiating these values after establishing the frame is that some Sources may
reject attempts to rotate data if one of the dimensions exceeds the physical width or height of
the scanner.

ICAP_OVERSCAN is intended as a way to capture image data beyond the usual boundaries of
a scanned sheet of paper, and is primarily intended as an aid in deskewing images. The
additional scan area is only reported with DAT_IMAGEINFO. The reason for negotiating this
value after setting the other values listed above is that some Sources may reject overscan if
certain dimensions are exceeded.

ICAP_AUTOMATICDESKEW will correct the rotation of an image, it may also affect the
dimensions of the image as reported by DAT_IMAGEINFO.
ICAP_AUTOMATICBORDERDETECTION reduces or removes the border generated around
an image by the scanner scanning its own platen (the area not covered by the paper).

ICAP_UNDEFINEDIMAGESIZE may be set to TRUE by a Source depending on one or more of
the previously negotiated capabilities. Applications need to remember that it is possible for
images to exceed the width and height dimensions, which can impact the amount of allocated
memory. It is also important to note that if the width is undefined and ICAP_XFERMECH is
set to TWSX_MEMORY, then the Source is required to also set ICAP_TILES to TRUE.

Bar Code Negotiation

ICAP_BARCODEDETECTIONENABLED must be set before any of the other, related
capabilities are made available. ICAP_SUPPORTEDBARCODETYPES should then be tested, to
determine what bar-code values are supported by the Source. After that the bar-code
capabilities may be negotiated in any order.

Patch Code Negotiation

ICAP_PATCHCODEDETECTIONENABLED must b set before any of the other, related
capabilities are made available. ICAP_SUPPORTEDPATCHCODETYPES should then be
tested, to determine what patch-code values are supported by the Source. After that the patch-
code capabilities may be negotiated in any order.

Imprinter/Endorser Negotiation

CAP_PRINTER establishes what (if any) printer/endorsers are supported by the Source.
Selecting one establishes a context for that printer/endorser that is used by all related
capabilities. CAP_PRINTERENABLED turns the printer on or off; the printer must be on in
order for the other settings to be negotiated. A Source may opt to refuse to enable a printer if
ICAP_SUPPORTEDSIZES selects a document with a size that is not within the area of the
printer.

CAP_PRINTERINDEX should be negotiated next. CAP_PRINTERMODE can then be
determined, followed by CAP_PRINTERSTRING and CAP_PRINTERSUFFIX.

Appendix A

A-544 TWAIN 1.9a Specification

Scaling

ICAP_XSCALING should be negotiated before the ICAP_YSCALING.

General Capability Negotiation

ICAP_XFERMECH selects the way an image is transferred from the Source to an Application,
which has an impact on some of the characteristics of an image, which is why this value must
be selected first. If TWSX_NATIVE is selected, then no other action related to image transfer is
needed. If TWSX_FILE or TWSX_FILE2 is selected, then the application should negotiate
ICAP_IMAGEFILEFORMAT, which will be used when DAT_SETUPFILEXFER or
DAT_SETUPFILEXFER2 is called. If TWSX_MEMORY is selected, then
DAT_SETUPMEMXFER will need to be called. The Application may then opt to negotiate
ICAP_TILES.

// Then negotiate these capabilities…

ICAP_PIXELTYPE

or

ICAP_JPEGPIXELTYPE

// Use of flash may affect other values…

ICAP_FLASHUSED
ICAP_FLASHUSED2

ICAP_AUTOBRIGHT
ICAP_BRIGHTNESS

ICAP_BITDEPTH
ICAP_BITDEPTHREDUCTION

ICAP_CUSTHALFTONE
ICAP_HALFTONES
ICAP_THRESHOLD

ICAP_BITORDER
ICAP_COMPRESSION

ICAP_BITORDERCODES
ICAP_CCITTKFACTOR
ICAP_PIXELFLAVORCODES
ICAP_TIMEFILL

ICAP_CONTRAST
ICAP_EXPOSURETIME
ICAP_FILTER
ICAP_GAMMA
ICAP_IMAGEFILTER
ICAP_NOISEFILTER
ICAP_PIXELFLAVOR

ICAP_HIGHLIGHT
ICAP_SHADOW

ICAP_PLANARCHUNKY
ICAP_XYRESOLUTIONLINKED

ICAP_XRESOLUTION
ICAP_XNATIVERESOLUTION
ICAP_YRESOLUTION

ICAP_YNATIVERESOLUTION

 TWAIN Articles

TWAIN 1.9a Specification A-545

Audio Negotiation

The availability of the audio capabilities can be inferred from the presence of DG_AUDIO. If it
is available then the Application should negotiate ACAP_XFERMECH. If TWSX_FILE or
TWSX_FILE2 is selected, then ACAP_AUDIOFILEFORMAT should be negotiated. Note that
these operations occur independently of the current value of DAT_XFERGROUP. The actual
selection of an audio file format takes place in State 6 using DAT_SETUPFILEXFER, and must
be preceded by a call to DAT_XFERGROUP / MSG_SET to DG_AUDIO to change the Source
over to the audio data group. Sources that transfer audio data need to set the Source back to
DG_IMAGE when they are done with the audio data, and ready to get image data, or exit back
to State 4.

Alarms

CAP_ALARMS selects the kind of audio alerts provided by a Source. CAP_ALARMVOLUME
is only available if an alarm is selected, and controls the volume for all alarms with a single
value.

Power Supply

CAP_POWERSUPPLY reports which power supply is currently in effect for the Source.
CAP_BATTERYPERCENTAGE, CAP_BATTERYMINUTES and CAP_POWERDOWNTIME are
available at all times, though the values they report may change depending on the current
value of CAP_POWERSUPPLY.

Asynchronous Device Events

CAP_DEVICEEVENT may be used to activate device events.

Automatic Capture

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIREDCTORY should
be negotiated first, since it selects the destination for the images.
CAP_TIMEBEFOREFIRSTCAPTURE and CAP_TIMEBETWEENCAPTURES should be
negotiated next. CAP_AUTOMATICCAPTURE must be negotiated last, because it is the
trigger that starts the timer.

Appendix A

A-546 TWAIN 1.9a Specification

Camera-Dependent Capabilities

The following list covers capabilities have no interdependencies, but which may be dependent
on the currently selected device (for Sources that support DAT_FILESYSTEM).

CAP_AUTHOR
CAP_CAPTION
CAP_DEVICETIMEDATE
CAP_ENDORSER
CAP_JOBCONTROL
CAP_PASSTHRU
CAP_SERIALNUMBER
CAP_TIMEDATE
CAP_XFERCOUNT
ICAP_EXTIMAGEINFO
ICAP_IMAGEDATASET
ICAP_LAMPSTATE
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE
ICAP_ZOOMFACTOR

Camera-Independent Capabilities

The following list covers capabilities that are free of any dependencies. Applications can
negotiate these in any order (during state 4), and regardless of the current device in effect (for
Sources that support DAT_FILESYSTEM):

CAP_CAMERAPREVIEWUI
CAP_CUSTOMDSDATA
CAP_DEVICEONLINE
CAP_DEVICETIMEDATE
CAP_ENABLEDSUIONLY
CAP_INDICATORS
CAP_PASSTHRU
CAP_THUMBNAILSENABLED
CAP_TIMEDATE
CAP_UICONTROLLABLE
CAP_XFERCOUNT

 TWAIN Articles

TWAIN 1.9a Specification A-547

Defaults
TWAIN describes defaults for capabilities, unfortunately, this information is spread throughout
the specification, and in some cases is ambiguous. This article discusses how Sources and
Applications should use and manage defaults values. It covers the three main kinds of defaults
supported by TWAIN. It discusses the DG_CONTROL / DAT_CAPABILITY / MSG_xxxx
functions and how they relate to defaults. Finally, it offers a section that describes the expected
default settings for each capability within TWAIN.

Default Mechanisms

Defaults in TWAIN serve three main functions:

Mandatory Defaults Protect Applications from incompatible settings.

Preferred Defaults Permit Source providers to expose preferred settings for
capabilities.

User Defaults Create consistency in a Source’s user interface; values selected in
one session are preserved for the next session.

Mandatory defaults are established by the TWAIN specification. Preferred defaults may be
selected by a Source for any capability that does not have a mandatory default. User defaults
may replace any preferred default with a value selected by the user through the Source’s user
interface. These three functions are not intrinsically compatible, which creates ambiguity;
Applications cannot make assumptions about the initial values of all capabilities.

Mandatory Defaults

Some capabilities must reflect certain values when a Source is opened. These defaults are
selected because Applications must be allowed to expect certain kinds of behavior without
being forced to negotiate all capabilities (not only would this be tedious, but it is impossible in
situations where a Source and Application are derived from different versions of TWAIN). For
example, the 1.8 capability CAP_PRINTERENABLED must default to FALSE, otherwise a 1.6
Application might find itself printing data on scanned documents, and unable to do anything
about it.

Preferred Defaults

TWAIN permits a Source to provide its own defaults. These settings are assumed to produce
the most favorable results possible, whether they are measured in terms of processing speed,
memory usage, or some other criteria. For instance, a Source will select a preferred value for
ICAP_PIXELFLAVOR that keeps it from having to invert the bits in an image. In some cases
the preferred defaults are gleaned from the current state of the device. For instance,
CAP_FEEDERENABLED depends on the presence of a feeder on the scanner device. A Source
is expected to determine if the feeder is truly present, not assume that the value saved from the
last session is valid.

Appendix A

A-548 TWAIN 1.9a Specification

User Defaults

Prior to TWAIN 1.7 Applications generally relied on Sources to provide user interfaces that
controlled image capture. Since one of the tenants of TWAIN is to make things easier for
Applications, it became common for Sources to save state, preserving the values selected by a
user, so the next time the Application started the same values would be displayed. This
mechanism continues to be desirable, but Source writers should bear in mind that user defaults
values are a convenience that can create problems for users who access their Source from more
than one Application. CAP_AUTOSCAN is an example of a capability that should never have
its state saved, since Applications that do not negotiate will also not be able to handle the
results if it happens to be set to TRUE.

DAT_CAPABILITY Operations

There are five methods of negotiating values with a Source, this section discusses how Sources
and Applications should relate them to the various kinds of default values:

• MSG_GET returns the current value of the capability, along with the allowed values (if
any). At startup, this value will reflect the mandatory default, if there is one. If there is
no mandatory default, then this call will return the user default, if supported and if one
is available; otherwise it will return the preferred default value for the Source. It is up to
the Application to understand the possible sources of a value, and override it if desired.
Note that the allowed values are always reset when a Source starts up. Sources must
never save the constraints created by an Application.

• MSG_GETCURRENT returns the current value of the capability, it does not return the
allowed list. At startup, this value will reflect the mandatory default, if there is one. If
there is no mandatory default, then this call will return the user default, if supported and
if one is available; otherwise it will return the preferred default value for the Source.

• MSG_GETDEFAULT always returns either the mandatory or preferred default,
whichever is appropriate for the capability. It never returns a user default. Like
MSG_GETCURRENT it only returns the value, not the allowed list.

• MSG_RESET resets a capability’s allowed list to all permitted values, and sets the
current value to the mandatory or preferred default, never the user default. The
container returned by MSG_RESET must be the same kind of container returned for a
MSG_GETDEFAULT operation, this preserves legacy behavior; however, Applications
should follow MSG_RESET with MSG_GET if they wish to determine how the
constraints for the capability have been reset. This message is a good one for
Applications to use, since it is easy to code, and can be used to get a Source to some kind
of a known state.

A simple mechanism for resetting a Source uses the following steps (Applications that use
the Source’s UI should not use this method): for each device supported by the Source (pre-1.8
Sources only have one implicit device) the Application calls CAP_SUPPORTEDCAPS; for
each capability the Application calls DG_CONTROL / DAT_CAPABILITY /
MSG_QUERYINTERFACE to see if it supports TWQI_RESET; if it does, then the
Application sends DG_CONTROL / DAT_CAPABILITY / MSG_RESET which resets the
capability.

 TWAIN Articles

TWAIN 1.9a Specification A-549

Performing these steps will protect an Application from any user defaults created by a
previous Application. Please note, not all Sources may support
MSG_QUERYINTERFACE. For those that don’t, an Application would have to issue
MSG_RESET on all capabilities (perhaps excluding those it knows to be read-only) and
trust that the Source is robust enough to report TWRC_FAILURE for those capabilities
that do not support MSG_RESET.

• MSG_SET sets the current value and optionally sets the constraints on a capability.
Sources must never save the constrains negotiated by an Application. The case of the
current value is a little different, since a Source is supposed to reflect the negotiated
values in its UI, it’s possible for a capability set in State 4 to find its way into the user
defaults.

Capability Default-Values Table

This table details for each capability whether its defaults are mandatory or not (preferred and
user defaults are non-mandatory), along with the default value, if any. Note that some
capabilities do not support defaults (actions), or have defaults that are governed by the current
device, or have defaults that are always equal to the current value (read-only values). It is
worth reiterating that the use of the word Mandatory does not imply that the capability must
be present in a Source, only that if it is present its initial value is defined by this specification.

Capability Type Value / Comments

ACAP_AUDIOFILEFORMAT n/a No default (current value is
meaningless)

ACAP_XFERMECH Mandatory TWSX_NATIVE

CAP_ALARMVOLUME Preferred / User No default

CAP_ALARMS Preferred / User No default

CAP_AUTHOR Preferred / User No default

CAP_AUTODISCARDBLANKPAPER Mandatory FALSE

CAP_AUTOFEED Preferred / User No default

CAP_AUTOMATICCAPTURE Preferred / User No default. It is possible for an
Application to disconnect from a
device, leaving it in a state where it will
automatically take pictures at the
specified time. This value is preserved
so that after a disconnect, a reconnect
will not reset automatic capture and
prevent the device from taking
pictures.

CAP_AUTOSCAN Mandatory FALSE

CAP_BATTERYMINUTES n/a Read-only value

CAP_BATTERYPERCENTAGE n/a Read-only value

CAP_CAMERAPREVIEWUI n/a Read-only value

CAP_CAPTION Preferred / User No default

Appendix A

A-550 TWAIN 1.9a Specification

CAP_CLEARBUFFERS Mandatory TWCB_AUTO

CAP_CLEARPAGE n/a n/a

CAP_CUSTOMDSDATA n/a Read-only value

CAP_DEVICEEVENT Mandatory Empty, no events reported by
MSG_GET

CAP_DEVICEONLINE n/a Read-only value

CAP_DEVICETIMEDATE n/a Device generated value

CAP_DUPLEX n/a Read-only value

CAP_DUPLEXENABLED Preferred / User Read-only value

CAP_ENABLEDSUIONLY n/a Read-only value

CAP_ENDORSER Mandatory 0

CAP_EXTENDEDCAPS Mandatory Empty, no capabilities reported by
MSG_GET

CAP_FEEDERALIGNMENT n/a Read-only value

CAP_FEEDERENABLED Preferred / User No default

CAP_FEEDERLOADED n/a Read-only value

CAP_FEEDERORDER n/a Read-only value

CAP_FEEDPAGE n/a Device action

CAP_INDICATORS Mandatory TRUE

CAP_JOBCONTROL Mandatory TWJC_NONE

CAP_LANGUAGE Preferred / User In the following order:

appIdentity->Version.Language

GetLocaleInfo(LOCALE_USER_DEFA
ULT)

Preferred (some suitable secondary
language, such as English or French)

CAP_MAXBATCHBUFFERS n/a Calculated value

CAP_PAGEMULTIPLEACQUIRE n/a Read-only value

CAP_PAPERDETECTABLE n/a Read-only value

CAP_POWERSAVETIME Preferred / User No default

CAP_POWERSUPPLY n/a Read-only value

CAP_PRINTER n/a No default

CAP_PRINTERENABLED Mandatory FALSE (for each item in
CAP_PRINTER)

CAP_PRINTERINDEX Preferred / User No default

 TWAIN Articles

TWAIN 1.9a Specification A-551

CAP_PRINTERMODE Preferred / User No default

CAP_PRINTERSTRING Preferred / User No default

CAP_PRINTERSUFFIX Preferred / User No default

CAP_REWINDPAGE n/a Device action ???

CAP_SERIALNUMBER n/a Read-only value

CAP_SUPPORTEDCAPS n/a Read-only value

CAP_TIMEBEFOREFIRSTCAPTURE Preferred / User No default

CAP_TIMEBETWEENCAPTURES Preferred / User No default

CAP_TIMEDATE n/a Read-only value

CAP_THUMBNAILSENABLED Mandatory FALSE

CAP_UICONTROLLABLE n/a Read-only value

CAP_XFERCOUNT Mandatory -1

ICAP_AUTOBORDERDETECTION Mandatory FALSE

ICAP_AUTOBRIGHT Preferred / User No default

ICAP_AUTOMATICDESKEW Mandatory FALSE

ICAP_AUTOMATICROTATE Mandatory FALSE

ICAP_BARCODEDETECTIONENABLED Mandatory FALSE

ICAP_BARCODEMAXBARS Preferred / User No default

ICAP_BARCODEMAXDISTANCE Preferred / User No default

ICAP_BARCODEMAXRETRIES Preferred / User No default

ICAP_BARCODEMAXSEARCHPRIORITIES Preferred / User No default

ICAP_BARCODEMINBARS Preferred / User No default

ICAP_BARCODEMINHEIGHT Preferred / User No default

ICAP_BARCODESEARCHMODE Preferred / User No default

ICAP_BARCODESEARCHPRIORITIES Preferred / User No default

ICAP_BARCODETIMEOUT Preferred / User No default

ICAP_BITDEPTH Preferred / User No default

ICAP_BITDEPTHREDUCTION Preferred / User No default

ICAP_BITORDER Preferred / User No default

ICAP_BITORDERCODES Preferred / User No default

ICAP_BRIGHTNESS Preferred / User No default

ICAP_CCITTFACTOR Preferred / User No default

ICAP_COMPRESSION Mandatory TWCP_NONE

Appendix A

A-552 TWAIN 1.9a Specification

ICAP_CONTRAST Preferred / User No default

ICAP_CUSTHALFTONE Preferred / User No default

ICAP_EXPOSURETIME Preferred / User No default

ICAP_EXTIMAGEINFO Mandatory FALSE

ICAP_FILTER Mandatory TWFT_NONE

ICAP_FLASHUSED Preferred / User Preferred or Device controlled default

ICAP_FLASHUSED2 Preferred / User Preferred or Device controlled default

ICAP_FLIPROTATION Mandatory TWFR_BOOK

ICAP_FRAMES Preferred / User No default

ICAP_GAMMA Preferred / User No default

ICAP_HALFTONES Preferred / User No default

ICAP_HIGHLIGHT Preferred / User No default

ICAP_IMAGEDATASET Mandatory Default to entire range of images

ICAP_IMAGEFILEFORMAT Preferred / User No default

ICAP_IMAGEFILTER Preferred / User No default

ICAP_JPEGPIXELTYPE Preferred / User No default

ICAP_LAMPSTATE Preferred / User No default

ICAP_LIGHTPATH Preferred / User No default

ICAP_LIGHTSOURCE Preferred / User No default

ICAP_MAXFRAMES Preferred / User No default

ICAP_MINIMUMHEIGHT n/a Read-only value

ICAP_MINIMUMWIDTH n/a Read-only value

ICAP_NOISEFILTER Preferred / User No default

ICAP_ORIENTATION Mandatory TWOR_PORTRAIT

ICAP_OVERSCAN Mandatory TWOV_NONE

ICAP_PATCHCODEDETECTIONENABLED Mandatory FALSE

ICAP_PATCHCODEMAXRETRIES Preferred / User No default

ICAP_PATCHCODEMAXSEARCHPRIORITIES Preferred / User No default

ICAP_PATCHCODESEARCHMODE Preferred / User No default

ICAP_PATCHCODESEARCHPRIORITIES Preferred / User No default

ICAP_PATCHCODETIMEOUT Preferred / User No default

ICAP_PHYSICALHEIGHT n/a Read-only value

ICAP_PHYSICALWIDTH n/a Read-only value

 TWAIN Articles

TWAIN 1.9a Specification A-553

ICAP_PIXELFLAVOR Preferred / User No default. This is a break from
previous versions of TWAIN, made to
better support the potential difference
in pixel flavor between bitonal and
grayscale data in the same device (note
that pixel flavor is not defined to have
any meaning for color data). Sources
are encouraged to default to
TWPF_CHOCOLATE if they are
accessed by an Application using a
protocol prior to TWAIN 1.9.
Applications are strongly encouraged
to check an image’s pixel flavor in state
7, at least once per batch.

ICAP_PIXELFLAVORCODES Preferred / User No default

ICAP_PIXELTYPE Preferred / User No default

ICAP_PLANARCHUNKY Preferred / User No default

ICAP_ROTATION Mandatory 0

ICAP_SHADOW Preferred / User No default

ICAP_SUPPORTEDBARCODETYPES n/a Read-only value

ICAP_SUPPORTEDPATCHCODETYPES n/a Read-only value

ICAP_SUPPORTEDSIZES Preferred / User No default

ICAP_THRESHOLD Preferred / User No default

ICAP_TILES Mandatory FALSE

ICAP_TIMEFILL Preferred / User No default

ICAP_UNDEFINEDIMAGESIZE Mandatory FALSE

ICAP_UNITS Preferred / User No default

ICAP_XFERMECH Mandatory TWSX_NATIVE

ICAP_XNATIVERESOLUTION n/a Read-only value

ICAP_XRESOLUTION Preferred / User No default

ICAP_XSCALING Preferred / User No default

ICAP_YNATIVERESOLUTION n/a Read-only value

ICAP_YRESOLUTION Preferred / User No default

ICAP_YSCALING Preferred / User No default

ICAP_ZOOMFACTOR Preferred / User No default

Appendix A

A-554 TWAIN 1.9a Specification

TWAIN 1.9a Specification B-555

B
TWAIN Technical Support

Chapter Contents
E-Mail Support 555
Worldwide Web 556
Information by Fax 556
Ordering Information 556

E-Mail Support
Developers who are connected to AppleLink and the WWW or Internet have access to TWAIN
support groups. The support groups can answer your TWAIN development or marketing
questions. There are two support groups: the TWAIN Working Group and the TWAIN
Developers distribution.

• The TWAIN Working Group is read by Technical, Marketing and Support
representatives from the Working Group companies. You can contact this group via e-
mail at twain-wg@twain.org.

• The TWAIN Developers distribution includes TWAIN developers who want to keep up
on TWAIN or offer advice to other developers. This distribution includes the TWAIN
Working Group. It is the best place to get support because both the Working Group and
other developers can respond. You can contact this group via e-mail at twain@twain.org.

TWAIN developers are encouraged to participate on the TWAIN Developer distribution list .
All developers responding to questions posted to this distribution should Cc the distribution.
The TWAIN Working Group also uses this distribution as a means to communicate with
developers. For example, we use the distribution when posting the latest news about TWAIN,
asking questions we may have about implementations, and requesting review of any Technical
Notes which are under development. Technical Notes provide the mechanism for distributing
updated information and corrections to errors that may occur in this document.

Appendix B

B-556 TWAIN 1.9a Specification

Worldwide Web
Developers connected to the WWW can also get on-line information and updates. There is an
on-line version of the Developers’ matrix with connections to those implementers with WWW
pages. In addition, this manual is available as a readable file.

The WWW address is: http://www.twain.org/

Information by Fax
From Hewlett-Packard

A short informational white paper on TWAIN and a TWAIN Developer’s Toolkit Order Form
are available using Hewlett-Packard’s fax back system, HP FIRST. To receive these documents
call from a touch tone phone or fax machine and the information will be faxed to you.

Phone Numbers:
Inside the US or Canada 800 333-1917
Other locations 08 344-4809

The Document Number is:
3130 TWAIN Toolkit Order Form

Ordering Information
Outside the US and Canada, the TWAIN toolkit is available using the order form available by
fax (see above).

	TWAIN Specification
	Acknowledgments

	Chapter 1 - Introduction
	The Need for Consistency
	The Elements of TWAIN
	The Benefits of Using TWAIN
	For the Application Developer
	For the Source Developer
	For the End User

	The Creation of TWAIN

	Chapter 2 - Technical Overview
	The TWAIN Architecture
	Application
	Protocol
	Acquisition
	Device

	The User Interface to TWAIN
	The Application
	The Source Manager
	The Source

	Communication Between the Elements of TWAIN
	The Application
	The Source Manager
	The Source
	Communication Flowing from Source to Application

	The Use of Operation Triplets
	The State-Based Protocol
	The Description of the States

	Capabilities
	Capability Containers
	Capability Negotiation and Container Types
	Capability Containers and String Values

	Modes Available for Data Transfer
	Native
	Disk File
	Buffered Memory

	Chapter 3 - Application Implementation
	Levels of TWAIN Implementation
	Installation of the Source Manager Software
	How to Install the Source Manager on Microsoft Windows Systems
	How to Install the Source Manager on Macintosh Systems

	Changes Needed to Prepare for a TWAIN Session
	Alter the Application’s User Interface to Add Select Source and Acquire Options
	Include the TWAIN.H File in Your Application
	Alter the Application’s Event Loop

	The DSM_Entry Call and Available Operation Triplets
	Operation Triplets - Application to Source Manager
	Operation Triplets - Application to Source
	DSM_Entry Parameters

	Controlling a TWAIN Session from Your Application
	State€1 to 2 - Load the Source Manager and Get the DSM_Entry
	State€2 to 3 - Open the Source Manager
	State€3 - Select the Source
	State€3 to 4 - Open the Source
	State€4 - Negotiate Capabilities with the Source
	State€4 to 5 - Request the Acquisition of Data from the Source
	State€5 to 6 - Recognize that the Data Transfer is Ready
	State€6 to 7 - Start and Perform the Transfer
	State€7 to 6 to 5 - Conclude the Transfer
	State€5 to 1 - Disconnect the TWAIN Session
	TWAIN Session Review

	Error Handling
	Common Types of Error Conditions
	Error Handling and State Transitions

	Requirements for an Application to be TWAIN-Compliant

	Chapter 4 - Advanced Application Implementation
	Capabilities
	Capability Values
	Capability Negotiation
	The Most Common Capabilities
	Constrained Capabilities and Message Responses
	Capability Containers in Code Form
	Delayed Negotiation - Negotiating Capabilities After State€4

	Options for Transferring Data
	Native Mode Transfer
	Disk File Mode Transfer
	Buffered Memory Mode Transfer

	The Image Data and Its Layout
	Getting Information About the Image That will be Transferred
	Changing the Image Attributes
	Resolving Conflict Between ICAP_FRAMES, ICAP_SUPPORTEDSIZES, DAT_IMAGELAYOUT
	ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOUT, DAT_IMAGEINFO

	Transfer of Multiple Images
	Preparing for Multiple Image Transfer
	Use of a Document Feeder

	Transfer of Compressed Data
	JPEG Compression

	Alternative User Interfaces
	Alternatives to Using the Source Manager’s Select Source Dialog
	Alternatives to Using the Source’s User Interface
	Modal Versus Modeless User Interfaces

	Grayscale and Color Information for an Image
	CIE Color Descriptors
	Grayscale Changes
	Palette Color Data
	RGB Response Curve Data

	Contrast, Brightness, and Shadow Values

	Chapter 5 - Source Implementation
	The Structure of a Source
	On Windows
	On Macintosh

	Operation Triplets
	Triplets from the Source Manager to the Source

	Sources and the Event Loop
	Handling Events
	Communicating to the Application

	User Interface Guidelines
	Displaying the User Interface
	Modal versus Modeless Interfaces
	Error and Device Control Indicators
	Progress Indicators
	Impact of Capability Negotiation
	Advanced Topics
	Implementing Modal and Modeless User Interfaces

	Capability Negotiation
	Inquiries From the Application
	Responding to Inquiries
	Responding to Requests to Set Capabilities
	Memory Allocation
	Limitations Imposed by the Negotiation

	Data Transfers
	Transfer Modes
	Initiating a Transfer
	Concluding a Successful Transfer
	Aborting a Transfer
	Native Mode Transfers
	Disk File Mode Transfers
	Buffered Memory Mode Transfers

	Error Handling
	Operation Triplet and State€Verification
	Unrecoverable Error Situations
	DAT_EVENT Handling Errors

	Memory Management
	Windows Specifics
	Macintosh Specifics
	General Guidelines
	Local Variables
	Instances Where the Source Allocates Memory

	Requirements to be a TWAIN-Compliant Source
	Requirements

	Other Topics
	Custom Operations
	Networking

	Chapter 6 - Entry Points and Triplet Components
	Entry Points
	Programming Basics
	Declaration of DSM_Entry(€)
	Parameters of DSM_Entry(€)
	Declaration of DS_Entry(€)

	Data Groups
	Programming Basics

	Data Argument Types
	Messages
	Custom Components of Triplets
	Custom Data Groups
	Custom Data Argument Types
	Custom Messages

	Chapter 7 - Operation Triplets
	An Overview of the Triplets
	From Application to Source Manager (Control Information)
	From Application to Source (Control Information)
	From Application to Source (Image Information)
	From Application to Source (Audio Information)
	From Source Manager to Source (Control Information)
	From Source to Application (Control Information via the Source Manager)�(Used by Windows Sources only)

	Format of the Operation Triplet Descriptions
	Operation Triplets

	Chapter 8 - Data Types and Data Structures
	Naming Conventions
	Data Structures, Variables, Pointers and Handles
	Constants and Types

	Platform Dependent Definitions and Typedefs
	On Windows
	On Macintosh

	Definitions of Common Types
	String types
	Numeric types
	Fixed point structure type

	Data Structure Definitions
	Extended Image Information Definitions
	TWAIN 1.7 Extended Image Attribute Capabilities
	TWAIN 1.9 Extended Image Attribute Capabilities

	Data Argument Types that Don’t �Have Associated TW_Structures
	Constants
	Generic Constants
	Capability Constants
	Language Constants

	Chapter 9 - Capabilities
	Overview
	Required Capabilities
	Capabilities in Categories of Functionality
	Asynchronous Device Events
	Capability Negotiation Parameters

	The Capability Listings

	Chapter 10 - Return Codes and Condition Codes
	An Overview of Return Codes and Condition Codes
	Currently Defined Return Codes
	Currently Defined Condition Codes
	Custom Return and Condition Codes

	Appendix A - TWAIN Articles
	Device Events
	Supported Sizes
	Automatic Capture
	Camera Preview
	The TWFY_CAMERAPREVIEW Device
	Performance

	File System
	Overview
	Rules for Path and File Names
	File System Components
	Rules for Root Directory
	Rules for Image Directory
	Context Variable
	Condition Codes
	File Types
	DAT_FILESYSTEM Operations
	Thumbnails and Sound Snippets
	Sample Recursive Directory Walk

	Internationalization
	TWAIN CAP_LANGUAGE Code to ANSI Code-Page Table
	Sample Converting from WideChar to MultiByte
	Sample Converting from MultiByte to WideChar
	Sample Use of the Conversion Functions

	Audio Snippets
	Collecting Audio Snippets
	Notes

	How to use the Preview Device
	Application Switch to the Preview Logical Device
	Setting Up Environments for Preview Mode
	Start Getting and Displaying Preview Thumbnails
	How to Take a Snapshot from Preview Scene

	Imprinter / Endorser
	Example of Use:

	Capability Ordering
	Language Support
	Duplex Control
	Device Negotiation
	Supported Capabilities
	Extended Capabilities
	Feeder Control
	Frame Management
	Bar Code Negotiation
	Patch Code Negotiation
	Imprinter/Endorser Negotiation
	Scaling
	General Capability Negotiation
	Audio Negotiation
	Alarms
	Power Supply
	Asynchronous Device Events
	Automatic Capture
	Camera-Dependent Capabilities
	Camera-Independent Capabilities

	Defaults
	Default Mechanisms
	Mandatory Defaults
	Preferred Defaults
	User Defaults
	DAT_CAPABILITY Operations
	Capability Default-Values Table

	Appendix B - TWAIN Support
	E-Mail Support
	Worldwide Web
	Information by Fax
	From Hewlett-Packard

	Ordering Information

