
Errata Document for the TWAIN 2.1 Specification 1
TWAIN Working Group

TWAIN Errata
For Version 2.1

July 28th, 2010

Errata Document for the TWAIN 2.1 Specification 2
TWAIN Working Group

Contents
Operation Triplets – Application to Source Manager .. 4

Requirements for an Application to be TWAIN-Compliant ... 5

Legacy Issues .. 6

DAT_SETUPFILEXFER2, TW_SETUPFILEXFER2, and TWSX_FILE2 ... 7

Alternative User Interfaces ... 9

TW_USERINTERFACE.ShowUI, CAP_INDICATORS and TWCC_OPERATORERR 10

Requirements for a Source to be TWAIN-Compliant ... 13

Data Group / Data Argument Type / Message / Page ... 14

Operation Triplets – Source to Application .. 15

Currently Defined Condition Codes .. 16

DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK ... 17

DG_CONTROL / DAT_CAPABILITY / MSG_GETHELP ... 18

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL .. 19

MSG_RESET / MSG_GETDEFAULT / MSG_RESETALL / APPENDIX A Defaults 20

DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK ... 21

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM .. 22

DG_CONTROL / DAT_PARENT / MSG_OPENDSM .. 23

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER .. 24

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET ... 25

TW_INFO .. 26

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET ... 27

TW_HANDLE .. 28

TW_PENDINGXFERS .. 29

Constants ... 30

ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE .. 31

Deprecated Items .. 32

Extended Image Attribute Capabilities (TW_HANDLE fix) .. 33

Extended Image Attribute Capabilities (Pixel fix) .. 34

DEVICEEVENT ... 35

CAP_FEEDERALIGNMENT ... 36

Chapter 10: DG_CONTROL / DAT_CAPABILITY / MSG_GET.. 37

CAP_CAMERAENABLED .. 39

CAP_CAMERAORDER .. 40

CAP_CAMERASIDE ... 41

CAP_DEVICEEVENT ... 42

CAP_DUPLEXENABLED ... 44

Errata Document for the TWAIN 2.1 Specification 3
TWAIN Working Group

CAP_JOBCONTROL .. 45

Rename CAP_POWERSAVETIME to CAP_POWERDOWNTIME .. 46

ICAP_AUTOMATICCOLORENABLED ... 47

ICAP_BITDEPTH... 48

ICAP_EXTIMAGEINFO ... 49

ICAP_FRAMES ... 50

ICAP_ICCPROFILE ... 51

ICAP_ORIENTATION .. 52

ICAP_SUPPORTEDEXTIMAGEINFO ... 53

Capability Ordering .. 54

PDF Cross References .. 55

Appendix A Capability Default-Values Table... 56

Internationalization .. 57

The ImageData and Its Layout .. 65

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET .. 68

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET ... 69

TW_FRAME ... 70

TW_IMAGELAYOUT ... 71

TWMF_DSOWNS .. 72

NativeTransfer .. 73

Wrong Capability IDs ... 74

Wrong Names ... 76

Missing File Format description ... 78

Missing constants.. 79

Wrong constants .. 80

Errata Document for the TWAIN 2.1 Specification 4
TWAIN Working Group

Operation Triplets – Application to Source Manager

Page 3-11 (PDF page 43)

Operation Triplets - Application to Source Manager

There are nine operation triplets that can be sent from the application to be consumed by the
Source Manager. They all use the DG_CONTROL data group and they use three different data
argument types: DAT_IDENTITY, DAT_PARENT, and DAT_STATUS. The following table lists the
data group, data argument type, and messages that make up each operation. The list is in
alphabetical order not the order in which they are typically called by an application. Details
about each operation are available in reference format in Chapter 7, "Operation Triplets.”

Control Operations from Application to Source Manager

DG_CONTROL / DAT_IDENTITY
MSG_CLOSEDS : Prepare specified Source for unloading
MSG_GETDEFAULT : Get identity information of the default Source
MSG_GETFIRST : Get identity information of the first available Source
MSG_GETNEXT : Get identity of the next available Source
MSG_OPENDS : Load and initialize the specified Source
MSG_SET : Set identity information of the default Source
MSG_USERSELECT : Present “Select Source” dialog

Errata Document for the TWAIN 2.1 Specification 5
TWAIN Working Group

Requirements for an Application to be TWAIN-Compliant

Page 3-41 (PDF page 73)

• Add the items below

TWAIN 2.1 Applications must support all TWAIN 2.0 required features and the following:

TWAIN Data Type

TWTY_HANDLE if supports DAT_EXTIMAGEINFO

TWAIN Condition Codes

TWCC_NOMEDIA if supports scanning with UI and Indicators suspended.

TWAIN 2.0 Applications must support all TWAIN 1.9 required features and the following:

TWAIN Data Flag

DF_APP2, DF_DS2, DF_DSM2

TW_IDENTITY.SupportedGroups |= DF_APP2

TWAIN Condition Codes

TWCC_INTERLOCK /* Cover or door is open */

TWCC_DAMAGEDCORNER /* Document has a damaged corner */

TWCC_FOCUSERROR /* Focusing error during document capture */

TWCC_DOCTOOLIGHT /* Document is too light */

TWCC_DOCTOODARK /* Document is too dark */

TWCC_NOMEDIA /* Source has nothing to capture */

DG_CONTROL DAT_ENTRYPOINT MSG_GET

DG_CONTROL / DAT_CALLBACK / MSG_REGISTERCALLBACK (Required by Mac OS X
and Linux, recommended for Windows)

Memory Functions
Use the memory functions of the DSM when talking to a TWAIN 2 Source.

Errata Document for the TWAIN 2.1 Specification 6
TWAIN Working Group

Legacy Issues

Page 3-42 (PDF page 74)

• Add this “Legacy Issues” section at the same level as the previous section “Requirements for an Application
to be TWAIN Compliant”

ICAP_BITDEPTH

Data Sources

Report the number-of-channels times the depth-per-channel. For example, a typical value for
ICAP_BITDEPTH when ICAP_PIXELTYPE is TWPT_RGB is 3 x 8 = 24.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources reporting
just the depth-per-channel. In the majority of cases a value of 8 for ICAP_BITDEPTH when
ICAP_PIXELTYPE is TWPT_RGB may be treated as if the bit depth is really 24.

CAP_DUPLEXENABLED

Data Sources

If a Data Source supports one of MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT for
a capability, it should support all get messages.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources not
supporting MSG_GET for CAP_DUPLEXENABLED. The Data Source may only support
MSG_GETCURRENT to determine if duplex option is enabled or not.

ICAP_FRAMES

Applications

Some scanners may handle having the origin of a frame as 0,0 differently. The spec states that
when an application is only interested in the extent of image scanned it can set the origin to 0,0
with MSG_SET. Some center feed or right feed scanners may scan from the left edge of the
scanner. They expect the application to center (or right align) the frame using the physical
extent of the scanner.

Errata Document for the TWAIN 2.1 Specification 7
TWAIN Working Group

DAT_SETUPFILEXFER2, TW_SETUPFILEXFER2, and TWSX_FILE2

Page 4-18 (PDF page 92)

• Update text under “Disk File Mode Transfer”

Disk File Mode Transfer

The disk file mode is identified as TWSX_FILE. Sources are not required to support Disk File
Transfer so it is important to verify its support.

Determine if a Source Supports the Disk File Mode

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

• Set the TW_CAPABILITY’s Cap field to ICAP_XFERMECH.

• The Source returns information about the transfer modes it supports in the container
structure pointed to by the hContainer field of the TW_CAPABILITY structure. The disk
file mode is identified as TWSX_FILE.

After Verifying Disk File Transfer is Supported, Set Up the Transfer

Dur ing State 4:

• Set the ICAP_XFERMECH to TWSX_FILE. Use the DG_CONTROL / DAT_CAPABILITY
/ MSG_SET operation.

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine
which file formats the Source can support. Set TW_CAPABILITY. Cap to
ICAP_IMAGEFILEFORMAT and execute the MSG_GET. The Source returns the
supported format identifiers which start with TWFF_ and may include TWFF_PICT,
TWFF_BMP, TWFF_TIFF, etc. They are listed in the TWAIN.H file and in the Constants
section of Chapter 8, "Data Types and Data Structures.”

Dur ing States 4, 5, or 6:

To set up the transfer the DG_CONTROL / DAT_SETUPFILEXFER operation of MSG_GET,
MSG_GETDEFAULT, and MSG_SET can be used.

The data structure used in the DSM_Entry call is a TW_SETUPFILEXFER structure (for
DAT_SETUPFILEXFER):

typedef struct {

TW_STR255 FileName; /* File to contain data */

TW_UINT16 Format; /* A TWFF_xxxx constant */

TW_HANDLE VrefNum; /* Used for Macintosh only */

} TW_SETUPFILEXFER, FAR *pTW_SETUPFILEXFER;

Page 10-11 (PDF page 433)

ACAP_XFERMECH
Allowed Values: TWSX_NATIVE
 TWSX_FILE
Container for MSG_GET: TW_ENUMERATION
 TW_ONEVALUE

Errata Document for the TWAIN 2.1 Specification 8
TWAIN Working Group

Page 10-190 (PDF page 612)

ICAP_XFERMECH
Allowed Values: TWSX_NATIVE
 TWSX_FILE
 TWSX_MEMORY
 TWSX_MEMFILE
Container for MSG_GET: TW_ENUMERATION
 TW_ONEVALUE

Page A-27 (PDF page 653)

General Capability Negotiation

ICAP_XFERMECH selects the way an image is transferred from the Source to an Application, which
has an impact on some of the characteristics of an image, which is why this value must be selected
first. If TWSX_NATIVE is selected, then no other action related to image transfer is needed. If
TWSX_FILE is selected, then the application should negotiate ICAP_IMAGEFILEFORMAT, which
will be used when DAT_SETUPFILEXFER is called. If TWSX_MEMORY is selected, then
DAT_SETUPMEMXFER will need to be called. The Application may then opt to negotiate
ICAP_TILES.

Errata Document for the TWAIN 2.1 Specification 9
TWAIN Working Group

Alternative User Interfaces

Page 4-37 (PDF page 111)

Displaying a custom selection interface:

1. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST operation to have the Source Manager
locate the first Source available. The name of the Source is contained in the
TW_IDENTITY.ProductName field. Save the TW_IDENTITY structure.

2. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT to have the Source Manager locate the next
Source. Repeatedly use this operation until it returns TWRC_ENDOFLIST indicating no more Sources
are available. Save the TW_IDENTITY structure.

3. Use the ProductName information to display the choices to the user. Once they have made their
selection, use the saved TW_IDENTITY structure and the DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS operation to have the Source Manager open the desired Source. (Note, using this
approach, as opposed to the SG_USERSELECT operation, the Source Manager does not update the
system default Source information to reflect your choice.)

4. Use the DG_CONTROL / DAT_IDENTITY / MSG_SET to set the system default source.

Transparently selecting a Source:

Errata Document for the TWAIN 2.1 Specification 10
TWAIN Working Group

TW_USERINTERFACE.ShowUI, CAP_INDICATORS and TWCC_OPERATORERR

Page 5-8 (PDF page 124)

• Insert the following under the section “Displaying the User Interface” after the paragraph starting “Sources
are not required to allow themselves…”

User Interface

Sources that report TRUE for CAP_UICONTROLLABLE must allow acquisition with the UI disabled, and
they must support TRUE and FALSE for CAP_INDICATORS.

If the Application sets ShowUI to TRUE when calling MSG_ENABLEDS, then the Source displays its user
interface. CAP_INDICATORS is ignored. A progress indicator is displayed during acquisition and transfer,
and errors can result in the Source showing a dialog to the user.

If the Application sets ShowUI to FALSE, but CAP_INDICATORS to TRUE when calling MSG_ENABLEDS,
then the Source does not display its user interface. But a progress indicator is still displayed during
acquisition and transfer, and an error can result in the Source showing a dialog to the user.

If the Application sets ShowUI to FALSE and CAP_INDICATORS to FALSE when calling MSG_ENABLEDS,
then the Source is not allowed to display any kind of user interface, progress indicator or error dialog. All
UI activity must be suppressed.

Page 4-38 (PDF page 112)

Alternatives to Using the Source’s User Interface

Just as with the Source Manager’s Select Source dialog, the application may ask to not use the Source’s
user interface. Certain types of applications may not want to have the Source’s user interface displayed.
An example of this can be seen in some text recognition packages that wish to negotiate a few
capabilities (i.e. pixel type, resolution, page size) and then proceed directly to acquiring and
transferring the data.

Some Sources may display the UI even when ShowUI is set to FALSE. An application can determine
whether ShowUI can be set by interrogating the CAP_UICONTROLLABLE capability. If
CAP_UICONTROLLABLE returns FALSE but the ShowUI input value is set to FALSE in an activation
of DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS, the enable DS operation returns
TWRC_CHECKSTATUS but displays the UI regardless. Therefore, an application that requires that the UI
be disabled should interrogate CAP_UICONTROLLABLE before issuing MSG_ENABLEDS.

To Enable the Source without Displaying its User Interface

• Use the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation.

• Set the ShowUI field of the TW_USERINTERFACE structure to FALSE.

• When the command is received and accepted (TWRC_SUCCESS), the Source does not
display a user interface but is armed to begin capturing data. For example, in a flatbed scanner,
the light bar will light and begin to move. A handheld scanner will be armed and ready to
acquire data when the “go” button is pressed on the scanner. Other devices may respond
differently but they all will either begin acquisition immediately or be armed to begin acquiring
data as soon as the user interacts with the device.

Capability Negotiation is Essential when the Source’s User Interface is not Displayed

• Since the Source’s user interface is not displayed, the Source will not be giving the user the
opportunity to select the information to be acquired, etc. Unless default values are acceptable,

Errata Document for the TWAIN 2.1 Specification 11
TWAIN Working Group

current values for all image acquisition and control parameters must be negotiated before the
Source is enabled, i.e. while the session is in State 4.

When TW_USERINTERFACE.ShowUI is set to FALSE:

• A Source that does not support ShowUI set to FALSE will return TWRC_CHECKSTATUS and
display the UI regardless.

• The application is still required to pass all events to the Source (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation) while the Source is enabled.

• The Source must display the minimum possible user interface containing only those controls
required to make the device useful in context. In general, this means that no user interface is
displayed, however certain devices may still require a trigger to initiate the scan.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All UI activity must be suppressed.

• If the Source user interface is displayed then the Source will ignore the setting for
CAP_INDICATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

• The Source still sends the application a MSG_XFERREADY notice when the data is ready to be
transferred.

• The Source may or may not send a MSG_CLOSEDSREQ to the application asking to be closed
since this is often user-initiated. Therefore, after the Source has returned to State 5 (following
the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation and the
TW_PENDINGXFERS.Count = 0), the application can send the DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation.

Page 5-8 (PDF page 124)

Error and Device Control Indicators

The Source knows what is happening with the device it controls. Therefore, the Source is responsible for
determining when and what information regarding errors and device controls (ex. “place paper in
document feeder”) should be presented to the user. Error information should be placed by the Source
on top of either the application’s or Source’s user interface. Do not present error messages regarding
capability negotiation to the user since this should be transparent.

Error messages are suppressed when the UI is not displayed and CAP_INDICATORS is set to FALSE.

Progress Indicators

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All UI activity must be suppressed.

• If the Source user interface is displayed then the Source will ignore the setting for
CAP_INDICATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

Errata Document for the TWAIN 2.1 Specification 12
TWAIN Working Group

Page 7-105 (PDF page 253)

 Note: If the application has set ShowUI or CAP_INDICATORS to TRUE, then the Source is
responsible for presenting the user with appropriate progress indicators regarding the
acquisition and transfer process. If ShowUI is set to TRUE, CAP_INDICATORS is ignored
and progress and errors are always shown.

Errata Document for the TWAIN 2.1 Specification 13
TWAIN Working Group

Requirements for a Source to be TWAIN-Compliant

Page 5-18 to 5-21 (PDF page 134-137)

• Update the section using the Mandatory White Paper

Errata Document for the TWAIN 2.1 Specification 14
TWAIN Working Group

Data Group / Data Argument Type / Message / Page

Page 7-3 (PDF page 151)

DG_IMAGE DAT_CIECOLOR MSG_GET 7-110
DG_IMAGE DAT_EXTIMAGEINFO MSG_GET 7-112
DG_IMAGE DAT_GRAYRESPONSE MSG_RESET 7-114
 MSG_SET 7-115
DG_IMAGE DAT_ICCPROFILE MSG_GET 7-116
DG_IMAGE DAT_IMAGEFILEXFER MSG_GET 7-118
DG_IMAGE DAT_IMAGEINFO MSG_GET 7-120
DG_IMAGE DAT_IMAGELAYOUT MSG_GET 7-122
 MSG_GETDEFAULT 7-124
 MSG_RESET 7-125
 MSG_SET 7-126
DG_IMAGE DAT_IMAGEMEMFILEXFER MSG_GET 7-128
DG_IMAGE DAT_IMAGEMEMXFER MSG_GET 7-131
DG_IMAGE DAT_IMAGEFILEXFER MSG_GET 7-128
DG_IMAGE DAT_IMAGENATIVEXFER MSG_GET 7-134

Errata Document for the TWAIN 2.1 Specification 15
TWAIN Working Group

Operation Triplets – Source to Application

Page 7-4 (PDF page 152)

• Add page number for MSG_CLOSEDSOK

Errata Document for the TWAIN 2.1 Specification 16
TWAIN Working Group

Currently Defined Condition Codes

Page 7-7 (PDF page 155)
Return Codes
TWRC_CANCEL
TWRC_XFERDONE
TWRC_FAILURE

TWCC_BADPROTOCOL
TWCC_OPERATIONERROR
TWCC_SEQERROR - not state 6.
/* The following introduced for 2.0 or higher */
TWCC_FILEWRITEERROR

Page 7-93 (PDF page 241)
Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_SEQERROR /* Operation invoked in invalid state */

/* The following introduced for 2.0 or higher */
TWCC_FILEWRITEERROR

Page 7-95 (PDF page 243)

Return Codes
TWRC_SUCCESS
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with application */
TWCC_BADPROTOCOL /* Source does not support file transfer */
TWCC_BADVALUE /* Source cannot comply with one of the */
 /* settings */
TWCC_SEQERROR /* Operation invoked in invalid state */
/* The following introduced for 2.0 or higher */
TWCC_FILEWRITEERROR

Page 7-119 (PDF page 267)

Return Codes
TWRC_XFERDONE
TWRC_CANCEL
TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
/* with application */

TWCC_OPERATIONERROR /* Failure in the Source -- */
/* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
/* invalid state */

/* The following introduced for 2.0 or higher */
TWCC_FILEWRITEERROR
TWCC_INTERLOCK /* Cover or door is open */
TWCC_DAMAGEDCORNER /* Document has a damaged corner */
TWCC_FOCUSERROR /* Focusing error during document capture */
TWCC_DOCTOOLIGHT /* Document is too light */
TWCC_DOCTOODARK /* Document is too dark */
TWCC_NOMEDIA /* Source has nothing to capture */

Errata Document for the TWAIN 2.1 Specification 17
TWAIN Working Group

DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK

Page 7-11 (PDF page 159)

Call
DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_CALLBACK,

MSG_REGISTER_CALLBACK, (TW_MEMREF)&callback);

Valid States

4

Description

This triplet is sent to the DSM by the Application to register the application’s entry point with
the DSM, so that the DSM can use callbacks to inform the application of events generated by
the DS.

The last argument is a pointer to an initialized TW_CALLBACK structure. The TW_CALLBACK
structure should be initialized as follows:

CallBackProc The callback function’s entry point, used by DSM to send
DAT_NULL/MSG_xxx

RefCon An application defined reference constant. Returned as _pData in
callback.

Note: Application should refrain from assigning a pointer to RefCon if they want the same
behavior in 32bit and 64bit. RefCon is not large enough to hold a pointer as 64bit.

Return Codes
TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADVALUE

See Also
DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK

Errata Document for the TWAIN 2.1 Specification 18
TWAIN Working Group

DG_CONTROL / DAT_CAPABILITY / MSG_GETHELP

Page 7-21 (PDF page 169)

Application

The Application frees the handle.

Source

The Source returns a TW_ONEVALUE container with a TWTY_HANDLE item type. The handle
points to a string. The encoding of the string is determined by the
TW_IDENTITY.TW_VERSION.Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes

TWRC_SUCCESS
TWRC_FAILURE
 TWCC_BADPROTOCOL

TWCC_CAPUNSUPPORTED

Errata Document for the TWAIN 2.1 Specification 19
TWAIN Working Group

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL

Page 7-22 (PDF page 170)

Application

The Application frees the handle.

Source

The Source returns a TW_ONEVALUE container with a TWTY_HANDLE item type. The handle
points to a string. The encoding of the string is determined by the
TW_IDENTITY.TW_VERSION.Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes

TWRC_SUCCESS
TWRC_FAILURE
 TWCC_BADPROTOCOL

TWCC_CAPUNSUPPORTED

Errata Document for the TWAIN 2.1 Specification 20
TWAIN Working Group

MSG_RESET / MSG_GETDEFAULT / MSG_RESETALL / APPENDIX A Defaults

Page 7-30 (PDF page 178)

Description

This command resets all current values back to original power-on defaults. All current values are
set to their default value except is the where mandatory values are required. All constraints are
removed for all of the negotiable capabilities supported by the driver.

Errata Document for the TWAIN 2.1 Specification 21
TWAIN Working Group

DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK

New section, add this after Page 7-73 (PDF page 221)

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_CLOSEDSOK, NULL); This operation
requires no data (NULL).

Valid States

5 through 7 (This operation causes the session to transition to State 5.)

Description

While the Source is enabled, the application is sending all events/messages to the Source. The
Source will use one of these events/messages to indicate to the application that it needs to be
closed with all changes preserved.

On Windows, the Source sends this DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK to the
Source Manager to cause the Source Manager to post a private message to the application’s
event/message loop. This guarantees that the application will have an event/message to pass
to the Source Manager so it will be able to communicate the Source’s Close request back to the
application.

On Macintosh, refer to Chapter 3, "Application Implementation.”

Source (on Windows only)

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point. pDest is the TW_IDENTITY structure of the application.

Source Manager (on Windows only)

Upon receiving this triplet, the Source Manager posts a private message to the application’s
event/message loop. Since the application is forwarding all events/messages to the Source
while the Source is enabled, this creates a communication device needed by the Source. When
this private message is received by the Source Manager (via the DG_CONTROL / DAT_EVENT /

MSG_PROCESSEVENT operation), the Source Manager will insert a MSG_CLOSEDSOK into the
TWMessage field on behalf of the Source.

Return Codes
TWRC_SUCCESS

TWRC_FAILURE

TWCC_SEQERROR /* Operation invoked in invalid state */

TWCC_BADDEST /* No such application in session with*/

 /* Source */

See Also
DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Errata Document for the TWAIN 2.1 Specification 22
TWAIN Working Group

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Page 7-79 (PDF page 227)

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_CLOSEDSM, pParent);

pParent should be the same value used in MSG_OPENDSM.

Description

When the application has closed all the Sources it had previously opened, and is finished with the
Source Manager (the application plans to initiate no other TWAIN sessions), it must close the Source
Manager. The application should unload the Source Manager DLL or code resource after the Source
Manager is closed—unless the application has immediate plans to use the Source Manager again.

After the Source Manager is closed the unique ID assigned to pOrigin->Id is no longer valid.

Page 8-70 (PDF page 368)

MSG_OPENDSM 0x0301

MSG_CLOSEDSM 0x0302

Errata Document for the TWAIN 2.1 Specification 23
TWAIN Working Group

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

Page 7-80 (PDF page 228)

 Call
DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_OPENDSM, pParent);

On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s
“parent”. The variable is of type TW_HANDLE and must contain the window handle.

On Macintosh - pParent = should be a NULL value.

Source Manager

Initializes and prepares itself for subsequent operations. Maintains a copy of pParent.

If successfully opened, the Source Manager will assign a unique ID to pOrigin->Id for this
application.

Errata Document for the TWAIN 2.1 Specification 24
TWAIN Working Group

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Page 7-82 (PDF page 230)

• Add to the Application section.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than TWJC_NONE
then check pPendingXfers->EOJ for TWEJ_xxx Job control value.

Page 7-83 (PDF page 231)

• Add to the Source section.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than TWJC_NONE
then pPendingXfers->EOJ should reflect the current TWEJ_xxx Job control value.

Errata Document for the TWAIN 2.1 Specification 25
TWAIN Working Group

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET

Page 7-84 (PDF page 232)

• Add to the Application section.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than TWJC_NONE
then check pPendingXfers->EOJ for TWEJ_xxx Job control value.

• Add to the Source When DAT_XFERGROUP is set to DG_IMAGE: section.

When CAP_JOBCONTROL is set to other than TWJC_NONE then pPendingXfers->EOJ should reflect
the current TWEJ_xxx Job control value.

Errata Document for the TWAIN 2.1 Specification 26
TWAIN Working Group

TW_INFO

Page 7-112 (PDF page 260)

pExtImageInfo->Info[0].ReturnCode = TWRC_INFONOTSUPPORTED;

pExtImageInfo->Info[0].ReturnCode = TWRC_SUCCESS;

Page 8-25 to 8-29 (PDF page 323 to 327)

ReturnCode = 0

ReturnCode = TWRC_SUCCESS

Page 8-44 (PDF page 342)

TW_UINT16 ReturnCode;

ReturnCode This is the return code of availability of data for extended image attribute requested.

Following is the list of possible condition codes:

Errata Document for the TWAIN 2.1 Specification 27
TWAIN Working Group

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Page 7-112 (PDF page 260)

If the application requests information that the Source does not recognize, the Source should put
TWRC_INFONOTSUPPORTED in the ReturnCode field of TW_INFO structure.

pExtImageInfo->Info[0].ReturnCode = TWRC_INFONOTSUPPORTED;

If the application requests information that the Source recognizes but is currently not available, the
Source should put TWRC_INFONOTAVAILABLE in the ReturnCode field of TW_INFO structure.

pExtImageInfo->Info[0].ReturnCode = TWRC_INFONOTAVAILABLE;

If you support the capability, fill in the fields allocating extra memory if necessary. For example, for
TWEI_BARCODEX:

Page 7-113 (PDF page 261)

For handle (Application set TWMF_HANDLE),

Errata Document for the TWAIN 2.1 Specification 28
TWAIN Working Group

TW_HANDLE

Page 8-35 (PDF page 333)

See “Platform Specific Typedefs” on page 8-4.for information on the actual mapping of this type.

Used by

Embedded in the TW_CAPABILITY and TW_USERINTERFACE structures, and used by TW_INFO and
TW_ONEVALUE structures when ItemType is TWTY_HANDLE. When used in a capability TW_HANDLE
must reflect a string. For TW_INFO, Application writers will need to look at the metadata to determine
if the Handle is a string or binary data.

Description

The typedef of Handles are defined by the operating system. TWAIN defines TW_HANDLE to be the
handle type supported by the operating system. Identified as a TW_HANDLE by setting ItemType to
TWTY_HANDLE where appropriate.

Field Descriptions

See definitions above

Errata Document for the TWAIN 2.1 Specification 29
TWAIN Working Group

TW_PENDINGXFERS

Page 8-54 (PDF page 352)

Field Descriptions

Count When DAT_XFERGROUP is set to DG_IMAGE, the number of complete transfers a Source
has available for the application it is connected to. If no more transfers are available, set to
zero. If an unknown and non-zero number of transfers are available, set to -1.

When DAT_XFERGROUP is set to DG_AUDIO, the number of complete audio snippet
transfers for a given image a Source has available for the application it is connected to. If
no more transfers are available, set to zero. –1 is not a valid value.

EOJ The application should check this field if the CAP_JOBCONTROL is set to other than
TWJC_NONE. If the EOJ is not 0, the application should expect more data from the driver
according to CAP_JOBCONTROL settings.

The source should fill this value with one of the TWEJ_xxx patch codes if
CAP_JOBCONTROL is set to other than TWJC_NONE.

Reserved Maintained so as not to cause compile time errors for pre-1.7 code.

Errata Document for the TWAIN 2.1 Specification 30
TWAIN Working Group

Constants

Pages 8-65 through 8-101 (PDF pages 363-399)

• Add a “Version” column to each table in this section.

Page 8-67 (PDF page 365)

2.1 TWTY_HANDLE 0x000F //Item is a TW_HANDLE

Errata Document for the TWAIN 2.1 Specification 31
TWAIN Working Group

ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

Page 8-79 (PDF page 377)

2.1 ICAP_AUTOMATICCOLORENABLED 0x1159

2.1 ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE 0x115A

2.1 ICAP_COLORMANAGEMENTENABLED 0x115B

Errata Document for the TWAIN 2.1 Specification 32
TWAIN Working Group

Deprecated Items

Page 8-102 (PDF page 400)

Capabilities CAP_SUPPORTEDCAPSEXT 0x100c
CAP_FILESYSTEM 0x????
CAP_PAGEMULTIPLEACQUIRE 0x1023 /* Added 1.8 */
CAP_PAPERBINDING 0x102f /* Added 1.8 */
CAP_PASSTHRU 0x1031 /* Added 1.8 */
CAP_POWERSAVETIME 0x1034 /* Added 1.8, deprecated */
 /* 0x1034 has been reused */

 /* by CAP_CAMERASIDE */

Errata Document for the TWAIN 2.1 Specification 33
TWAIN Working Group

Extended Image Attribute Capabilities (TW_HANDLE fix)

Pages 9-2 (PDF page 404), 9-19 (PDF page 421)

• Example

Value Type: TW_HANDLE

• Should become

Value Type: TWTY_HANDLE

Errata Document for the TWAIN 2.1 Specification 34
TWAIN Working Group

Extended Image Attribute Capabilities (Pixel fix)

Pages 9-3 through 9-17 (PDF pages 405 through 419)
• Change the following items, looking for the word “coordinate”, adding the words “in pixels” after each

occurrence.

TWEI_BARCODEX, TWEI_BARCODEY, TWEI_DESHADETOP, TWEI_DESHADELEFT,
TWEI_DESHADEHEIGHT, TWEI_DESHADEWIDTH, TWEI_DESHADESIZE, TWEI_HORZLINEXCOORD,
TWEI_HORZLINEYCOORD, TWEI_HORZLINELENGTH, TWEI_HORZLINETHICKNESS,
TWEI_VERTLINEXCOORD, TWEI_VERTLINEYCOORD, TWEI_VERTLINELENGTH,
TWEI_VERTLINETHICKNESS, TWEI_SKEWWINDOWX1, TWEI_SKEWWINDOWY1,
TWEI_SKEWWINDOWX2, TWEI_SKEWWINDOWY2, TWEI_SKEWWINDOWX3, TWEI_SKEWWINDOWY3,
TWEI_SKEWWINDOWX4, , TWEI_SKEWWINDOWY4, TWEI_FORMHORZDOCOFFSET,
TWEI_FORMVERTDOCOFFSET, and TWEI_FRAME

Example:

TWEI_BARCODEX

Description The X coordinate in pixels of a bar code found on a page.

Errata Document for the TWAIN 2.1 Specification 35
TWAIN Working Group

DEVICEEVENT

Page 10-2 (PDF page 424)

Capabilities in Categories of Functionality

Asynchronous Device Events
CAP_DEVICEEVENT MSG_SET selects which events the application wants the source to

report; MSG_RESET resets the capability to the empty array (no events
set).

Errata Document for the TWAIN 2.1 Specification 36
TWAIN Working Group

CAP_FEEDERALIGNMENT

Page 10-7 (PDF page 429)

CAP_FEEDERALIGNMENT Indicates the alignment of the document feeder.

Page 10-48 (PDF page 470)

Description
Helps the Application determine any special actions it may need to take when negotiating

frames with the Source.

TWFA_NONE: The alignment is free-floating. Applications should assume that the origin

for frames is on the left.
TWFA_LEFT: The alignment is to the left.
TWFA_CENTER: The alignment is centered. This means that the paper will be fed in the

middle of the ICAP_PHYSICALWIDTH of the device. If this is set, then the
Application should calculate any frames with a left offset

TWFA_RIGHT: The alignment is to the right. If this is set, then the Application should
calculate any frames with a left offset.

Errata Document for the TWAIN 2.1 Specification 37
TWAIN Working Group

Chapter 10: DG_CONTROL / DAT_CAPABILITY / MSG_GET

Page 10-10 (PDF page 432)

Containers
MSG_GETCURRENT & MSG_GETDEFAULT: Acceptable containers for use on MSG_GETCURRENT

and MSG_GETDEFAULT operations.
MSG_GET Acceptable containers for use on MSG_GET

operations.
MSG_RESET Acceptable containers for use on MSG_RESET

operations.
MSG_SET Acceptable containers for use on MSG_SET

operations.

Required By
If a Source or application is required to support the capability.

Source Required Operations
Operations the Source is required to support.

TWAIN Version Introduced
 Version 2.1

See Also

Example

Values
Type: TW_BOOL
Default Value: None
Allowed Values: TRUE or FALSE

Containers
MSG_GETCURRENT & MSG_GETDEFAULT: TW_ONEVALUE
MSG_GET: TW_ONEVALUE, // for backwards compatibility with
1.x applications only
 TW_ENUMERATION // mandatory for 2.1 application
and higher
MSG_RESET: Not allowed
MSG_SET: Not allowed
MSG_QUERYSUPPORT: TW_ONEVALUE

Required By
None

Source Required Operations
None

TWAIN Version Introduced

Version 2.1

Errata Document for the TWAIN 2.1 Specification 38
TWAIN Working Group

Pages 10-16, 10-19, 10-21, 10-25, 10-33, 10-44, 10-50, 10-54, 10-55, 10-57, 10-65, 10-71, 10-88, 10-91, 10-93, 10-95,
10-96, 10-98, 10-99, 10-102, 10-118, 10-124, 10-148, 10-159, 10-186, 10-188

MSG_GET: TW_ONEVALUE, // for backwards compatibility with 1.x applications only
 TW_ENUMERATION // mandatory for 2.1 applications and higher

Pages 10-28, 10-35, 10-41, 10-45, 10-51, 10-66, 10-77, 10-79, 10-89, 10-94

MSG_GET: TW_ONEVALUE,
TW_ENUMERATION // allowed for 2.0 applications and higher

Errata Document for the TWAIN 2.1 Specification 39
TWAIN Working Group

CAP_CAMERAENABLED
Page 10-25 (PDF page 447)

Description

This feature depends on “camera addressing”, which is the ability to address elements in the device
responsible for the color space or location. TWAIN offers DAT_FILESYSTEM and CAP_CAMERASIDE to do
this.

When set to TRUE the device will deliver images from the current camera. The Current Camera can be
selected with either CAP_CAMERASIDE or DAT_FILESYSTEM. With CAP_CAMERASIDE it is possible to
enable bottom (rear) only scanning, or have different settings for top and bottom. With DAT_FILESYSTEM
it is possible to enter a Single Document Multiple Images (SDMI) mode in addition to enabling different
settings for top and bottom.

Application

CAP_CAMERASIDE is easier to use, but cannot be used for SDMI. To enable bottom only scanning, set
CAP_CAMERASIDE to TWCS_BOTTOM and set CAP_CAMERAENABLED to TRUE, then set CAP_CAMERASIDE
to TWCS_TOP and set CAP_CAMERAENABLED to FALSE.

With DAT_FILESYSTEM an application can traverse and control all cameras individually.

An application should not use both CAP_CAMERASIDE and DAT_FILESYSTEM to address a camera.

Avoid using ICAP_PIXELTYPE after

The application is not allowed to turn off CAP_CAMERAENABLED for all cameras.

 setting CAP_CAMERAENABLED. ICAP_PIXELTYPE implicitly sets
CAP_CAMERAENABLED to TRUE for both sides of the current pixel type, and sets all other cameras to false.
This supports legacy behavior. An application can always reasonably expect that setting
ICAP_PIXELTYPE to TWPT_RGB and then scanning (simples or duplex) will result in getting color images.

Source

A Source that supports CAP_CAMERAENABLED must support DAT_FILESYSTEM or CAP_CAMERASIDE or
both.

If CAP_CAMERASIDE is supported, the application can use it to set the driver up for bottom (rear) only
scanning. Set CAP_CAMERASIDE to TWCS_BOTTOM and set CAP_CAMERAENABLED to TRUE, then set
CAP_CAMERASIDE to TWCS_TOP and set CAP_CAMERAENABLED to FALSE.

If DAT_FILESYSTEM is supported, then the application may be able to enter Single Document Multiple
Images (SDMI) mode. In this mode the application can independently address the color, grayscale, bitonal,
top and bottom cameras as supported by the driver. If the application sets CAP_CAMERAENABLED to TRUE
for more than one “pixel type” on the same camera side, (for instance, color and bitonal on the front) then
the driver will output multiple images for that side of the document.

When ICAP_PIXELTYPE is set or reset and CAP_CAMERASIDE is set to TWCS_BOTH, the source sets the
current camera(s) to TRUE and sets all others to FALSE.

If the application attempts to set all CAP_CAMERAENABLED values to FALSE, the source returns a status of
TWRC_FAILURE / TWCC_CAPSEQERROR. At least one camera must be enabled at all times.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Note: It is not recommended that applications mix the use of ICAP_PIXELTYPE with DAT_FILESYSTEM
or CAP_CAMERASIDE. ICAP_PIXELTYPE is intended for simple applications that only want to
choose color, grayscale or bitonal. Applications that want to provide bottom (rear) only scanning
should use DAT_FILESYSTEM or CAP_CAMERASIDE. Applications that want to provide Single
Document Multiple Images should use DAT_FILESYSTEM.

Errata Document for the TWAIN 2.1 Specification 40
TWAIN Working Group

CAP_CAMERAORDER

Page 10-27 (PDF page 449)

Description

This capability selects the order of output for Single Document Multiple Image (SDMI) mode based
on an array of pixel types; it does not constrain the allowed pixel types.

For example, if the scanner is set up to deliver color and bitonal documents on the top (front)
camera, then an array of {TWPT_RGB, TWPT_BW} will deliver first the color image, then the bitonal
image, while an array of {TWPT_BW, TWPT_RGB} will deliver first the bitonal image, then the color
image.

Application

Some sources support independent ordering of color, grayscale and bitonal, while other sources
may link color and grayscale together. This can be detected by setting CAP_CAMERAORDER to all of
the available ICAP_PIXELTYPE values {ex: TWPT_RGB, TWPT_GRAY, TWPT_BW} followed by a
MSG_GET to examine the result. In this example a source that supports full, independent control
will return back exactly the same list it was set to, while a source that links pixel types together will
return a reduced list, such as {TWPT_RGB, TWPT_BW}.

Source

Camera ordering only applies when CAP_CAMERAENABLED is set for more than one pixel type on
the same camera side, putting the scanner into SDMI mode. DAT_FILESYSTEM is used to address
each camera.

CAP_CAMERAORDER does not control the enabling or disabling of SDMI, it has no meaning if SDMI
is not turned on, therefore it should return TWRC_FAILURE / TWCC_CAPSEQERROR if SDMI is off,
and will be ignored.

The setting applies to both the top (front) and the bottom (rear). The source is not allowed to have
one ordering for the top and different ordering for the bottom.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Errata Document for the TWAIN 2.1 Specification 41
TWAIN Working Group

CAP_CAMERASIDE

Page 10-29 (PDF page 451)

Description

TWAIN models a duplex scanner as conceptually having two 'cameras' - a 'top' camera that
captures the front of each page, and a 'bottom' camera that captures the back. Some devices allow
these two logical cameras to operate with different settings for certain capabilities.
CAP_CAMERASIDE provides a simple way to address the cameras individually: The value of
CAP_CAMERASIDE determines whether subsequent capability negotiation is directed to one camera
or the other, or to both.

Application

The application sets which camera it wishes to address with CAP_CAMERASIDE. The application
then sets any capability that allows independent values for the top and bottom.

There is no easy way to determine if a capability supports independent values for the top and
bottom, though as a general rule the ICAP_ capabilities are more likely to allow this. An application
can determine support by setting one side, then testing the other side to see if it has changed.

Mixing camera selection using DAT_FILESYSTEM and CAP_CAMERASIDE is not recommended,
and may produce unexpected results.

Source

If set to TWCS_BOTH (the default) then DAT_CAPABILITY / MSG_SET and MSG_RESET operations
apply to the top and bottom. MSG_GET operations get their data from the top camera.

If set to TWCS_TOP or TWCS_BOTTOM, and if the capability being negotiated allows separate values
for the top and bottom, then only the side addressed by this capability will be changed as part of a
MSG_SET or MSG_RESET, or returned as part of a MSG_GET.

If a capability does not allow separate values for the top and bottom (for instance
CAP_DUPLEXENABLED), then the current value of CAP_CAMERASIDE has no impact on how it is
negotiated.

CAP_CAMERASIDE and CAP_DUPLEXENABLED are independent and have no effect on each other.
That is, if CAP_DUPLEXENABLED is FALSE CAP_CAMERASIDE can still be set to TWCS_BOTTOM.

If DAT_FILESYSTEM is also supported by the source, it must keep it in sync with the current value
of this capability.

Errata Document for the TWAIN 2.1 Specification 42
TWAIN Working Group

CAP_DEVICEEVENT

Page 10-38 to 10-39 (PDF page 460- 461)

Description

MSG_SET selects which events the Application wants the Source to report. MSG_GET and
MSG_GETCURRENT gets the current setting. MSG_RESET resets the capability to the empty array
(no events set).

TWDE_CHECKAUTOMATICCAPTURE: The automatic capture settings on the device have been
changed by the user.

TWDE_CHECKBATTERY: The status of the battery has changed.
TWDE_CHECKFLASH: The flash setting on the device has been changed by the

user.
TWDE_CHECKPOWERSUPPLY: The power supply has been changed (for instance, the user

may have just connected AC to a device that was running
on battery power).

TWDE_CHECKRESOLUTION: The x/y resolution setting on the device has been changed
by the user.

TWDE_DEVICEADDED: The user has added a device (for instance a memory card
in a digital camera).

TWDE_DEVICEOFFLINE: A device has become unavailable, but has not been
removed.

TWDE_DEVICEREADY: The device is ready to capture an image.
TWDE_DEVICEREMOVED: The user has removed a device.
TWDE_IMAGECAPTURED: The user has captured an image to the device’s internal

storage.
TWDE_IMAGEDELETED: The user has removed an image from the device’s internal

storage.
TWDE_PAPERDOUBLEFEED: Two or more sheets of paper have been fed together.
TWDE_PAPERJAM: The device’s document feeder has jammed.
TWDE_LAMPFAILURE: The device’s light source has failed.
TWDE_CHECKDEVICEONLINE: The device has been turned off and on.
TWDE_POWERSAVE: The device has powered down to save energy.
TWDE_POWERSAVENOTIFY: The device is about to power down to save energy.
TWDE_CUSTOMEVENTS: Baseline for events specific to a given Source.

Application

Set all values and process the TWRC_FAILURE / TWCC_CHECKSTATUS (if returned) to identify
those items supported by the Source. MSG_GET and MSG_GETCURRENT to get a list of
currently enabled items.

Source

The startup default must be an empty array. Generate TWRC_FAILURE / TWCC_CHECKSTATUS
and remove unsupported events when an Application requests events not supported by the
Source.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Errata Document for the TWAIN 2.1 Specification 43
TWAIN Working Group

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL /DAT_CAPABILITY/ MSG_QUERYSUPPORT)

Please note that the actions of an Application must never directly generate a device event. For
instance, if the user deletes an image using the controls on the device, then the Source should
generate an event. If, however, an Application deletes an image in the device (using
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE), then the Source must not generate an
event.

Values

Type: TW_UINT16

Default Value: (empty array)

Allowed Values: TWDE_CHECKAUTOMATICCAPTURE
TWDE_CHECKBATTERY
TWDE_CHECKDEVICEONLINE
TWDE_CHECKFLASH
TWDE_CHECKPOWERSUPPLY
TWDE_CHECKRESOLUTION
TWDE_DEVICEADDED
TWDE_DEVICEOFFLINE
TWDE_DEVICEREADY
TWDE_DEVICEREMOVED
TWDE_IMAGECAPTURED
TWDE_IMAGEDELETED
TWDE_PAPERDOUBLEFEED
TWDE_PAPERJAM
TWDE_LAMPFAILURE
TWDE_POWERSAVE
TWDE_POWERSAVENOTIFY
TWDE_CUSTOMEVENTS 0x8000

Container for MSG_GET: TW_ARRAY

Container for MSG_SET: TW_ARRAY

Container for MSG_QUERYSUPPORT: TW_ONEVALUE

Required By

None

Source Required Operations

None

See Also

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Device Events Article

Errata Document for the TWAIN 2.1 Specification 44
TWAIN Working Group

CAP_DUPLEXENABLED

Page 10-44 (PDF page 466)

Application

Application should send MSG_GET or MSG_GETCURRENT to determine if the duplex option is
enabled or not.

Errata Document for the TWAIN 2.1 Specification 45
TWAIN Working Group

CAP_JOBCONTROL

Page 10-58 (PDF page 480)

If the application selects options other than none, it should check the EOJ field for one of the TWEJ_xxx patch
codes of the PENDINGXFERS data.

Errata Document for the TWAIN 2.1 Specification 46
TWAIN Working Group

Rename CAP_POWERSAVETIME to CAP_POWERDOWNTIME
Page 10-67 (PDF page 489)

Type: TW_INT32

Default Value: No Default

Allowed Values: >= -1

Container for MSG_GET: TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE

Container for MSG_QUERYSUPPORT: TW_ONEVALUE

Page A-28 (PDF page 654)

Power Supply

CAP_POWERSUPPLY reports which power supply is currently in effect for the Source.
CAP_BATTERYPERCENTAGE, CAP_BATTERYMINUTES and CAP_POWERSAVETIME are
available at all times, though the values they report may change depending on the current
value of CAP_POWERSUPPLY.

Page 8-79 (PDF page 377)
2.1 CAP_POWERSAVETIME 0x115F

Twain.h
#define CAP_POWERSAVETIME 0x115f /* Added 2.1 */

Errata Document for the TWAIN 2.1 Specification 47
TWAIN Working Group

ICAP_AUTOMATICCOLORENABLED

Page 10-96 (PDF page 518)

Values

Type: TW_BOOL
Default Value: FALSE
Allowed Values: TRUE, FALSE
Container for MSG_GET: TW_ENUMERATION, TW_ONEVALUE
Container of MSG_SET: TW_ENUMERATION, TW_ONEVALUE
Container for MSG_QUERYSUPPORT: TW_ONEVALUE

Errata Document for the TWAIN 2.1 Specification 48
TWAIN Working Group

ICAP_BITDEPTH

Page 10-111 (PDF page 533)
Description
Specifies the pixel bit depths for the Current value of ICAP_PIXELTYPE.

For example;

ICAP_PIXELTYPE = TWPT_GRAY, this capability specifies whether this is 4-bit gray or 8- bit gray
ICAP_PIXELTYPE = TWPT_RGB, this capability specifies whether this is 24-bit color or 48-bit color

This depth applies to the total of all the data channels. TW_IMAGEINFO BitsPerSample is used to
identify the number of bits in each channel.

Page 4-8 (PDF page 82)
Depth of the Pixels (in bits)
A pixel type such as TWPT_BW allows only 1 bit per pixel (either black or white). The other pixel types
may allow a variety of bits per pixel (4-bit or 8-bit gray, 24-bit or 48-bit color). Be sure to set the
ICAP_PIXELTYPE first, then set the ICAP_BITDEPTH.

Errata Document for the TWAIN 2.1 Specification 49
TWAIN Working Group

ICAP_EXTIMAGEINFO

Page 10-124 (PDF page 546)

Description

Allows the application to query the data source to see if it supports the operation triplet
DG_IMAGE/ DAT_EXTIMAGEINFO / MSG_GET. Support is only available if the capability is
supported and the value TRUE is allowed.

When set to TRUE, the source supports the DG_IMAGE /DAT_EXTIMAGEINFO / MSG_GET
message, and data will be returned by this call for any supported TWEI_ items.

When set to FALSE, the application is indicating that it will make no calls to DG_IMAGE/
DAT_EXTIMAGEINFO/ MSG_GET. FALSE is the default.

Note: The TWAIN API allows for an application to query the results of many advanced
device/manufacturer operations. The responsibility of configuring and setting up each advanced
operation lies with the device’s data source user interface. Since the configuration of advanced
device/manufacturer-specific operations varies from manufacturer to manufacturer, placing the
responsibility for setup and configuration of advanced operations allows the application to
remain device independent.

Application

Set this capability to FALSE if there is no intent to use DG_IMAGE /DAT_EXTIMAGEINFO /
MSG_GET. This may improve performance, since the Source is not required to collect that
information from the device. Set this capability to TRUE if using DG_IMAGE
/DAT_EXTIMAGEINFO / MSG_GET to ensure all TWEI_items are available.

Errata Document for the TWAIN 2.1 Specification 50
TWAIN Working Group

ICAP_FRAMES

Pages 10-131 (PDF page 553)

Application

MSG_GET returns the size and location of all the frames the Source will acquire image data
from when acquiring from each page.

MSG_GETCURRENT returns the size and location of the next frame to be acquired.

MSG_SET allows the application to specify the frames and their locations to be used to acquire
from future pages. If the application isn’t interested in setting the origin of the image, set both
Top and Left to zero.

Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS) of the rectangle
enclosing the original image on the original scanner. This ICAP is most useful if the Source
supports simultaneous acquisition from multiple frames. Use ICAP_MAXFRAMES to establish
this ability.

Errata Document for the TWAIN 2.1 Specification 51
TWAIN Working Group

ICAP_ICCPROFILE

Page 10-135 (PDF page 557)

Values

Type: TW_UNIT16
Default Value: No Default
Allowed Value: TWIC_NONE,

TWIC_EMBED,
TWIC_LINK

Container for MSG_GET: TW_ENUMERATION,
TW_ONEVALUE

Container for MSG_SET: TW_ONEVALUE
Container for MSG_QUERYSUPPORT: TW_ONEVALUE

Errata Document for the TWAIN 2.1 Specification 52
TWAIN Working Group

ICAP_ORIENTATION

Pages 10-155 (PDF page 577)

• TWOR_AUTOxxxx values were introduced in 2.0 but should not be used with ICAP_ORIENTATION.

Application

TWOR_ROT0 == TWOR_PORTRAIT and TWOR_ROT270 == TWOR_LANDSCAPE.
TWOR_AUTO orients the image according to criteria determined by the source. TWOR_AUTOTEXT
orients the document using text only algorithms. TWOR_AUTOPICTURE orients the document using
image only algorithms.

Values

Allowed Values: TWOR_ROT0

TWOR_ROT90
TWOR_ROT180
TWOR_ROT270
TWOR_PORTRAIT (equals TWOR_ROT0)
TWOR_LANDSCAPE (equals TWOR_ROT270)
TWOR_AUTO // 2.0 and higher
TWOR_AUTOTEXT // 2.0 and higher
TWOR_AUTOPICTURE // 2.0 and higher

Description

Defines which edge of the “paper” the image’s “top” is aligned with. This information is used to
adjust the frames to match the scanning orientation of the paper. For instance, if an
ICAP_SUPPORTEDSIZE of TWSS_ISOA4 has been negotiated, and ICAP_ORIENTATION is set to
TWOR_LANDSCAPE, then the Source must rotate the frame it downloads to the scanner to reflect the
orientation of the paper.

• ICAP_ORIENTATION affects the values reported by ICAP_FRAMES when using
ICAP_SUPPORTEDSIZES.

• ICAP_ORIENTATION is ignored when set using ICAP_FRAMES or DAT_IMAGELAYOUT.

Pages A-26 Frame Management (PDF page 652)

ICAP_ORIENTATION is intended to tell a Source the orientation of a page in the scanner.
ICAP_ROTATION is a specific request to the scanner to rotate the scanned image the indicated number
of degrees. ICAP_ORIENTATION with ICAP_SUPPORTEDSIZES will affect ICAP_FRAMES and
DAT_IMAGELAYOUT. ICAP_ROTATION should only affect the output from DAT_IMAGEINFO. The
reason for negotiating these values after establishing the frame is that some Sources may reject attempts
to rotate data if one of the dimensions exceeds the physical width or height of the scanner.

Errata Document for the TWAIN 2.1 Specification 53
TWAIN Working Group

ICAP_SUPPORTEDEXTIMAGEINFO

Page 10-179 (PDF page 601)

Replace second paragraph under the Application section.

For instance, if the Source supports ICAP_BARCODEDETECTIONENABLED, then it may report
TWEI_BARCODETEXT as part of this capability. However, if the image that was just captured has no
barcode data, or if ICAP_BARCODEDETECTIONENABLED was disabled, then the Source can return
TWRC_DATANOTAVAILABLE or TWRC_INFONOTSUPPORTED for that TW_INFO field, when the
Application calls DAT_EXTIMAGEINFO.

Errata Document for the TWAIN 2.1 Specification 54
TWAIN Working Group

Capability Ordering

Pages A-27 through A-30 (PDF page 650-656)

Insert the Capability Ordering flowchart and text from the current white paper.

Errata Document for the TWAIN 2.1 Specification 55
TWAIN Working Group

PDF Cross References

Make sure the cross-references are resolved when building the PDF file

Errata Document for the TWAIN 2.1 Specification 56
TWAIN Working Group

Appendix A Capability Default-Values Table

Page A-33 (PDF page 659-661)

CAP_CAMERASIDE Mandatory TWCS_BOTH

CAP_DUPLEXENABLED Preferred / User No default

CAP_FEEDERALIGNMENT n/a No default

Page A-34

• Add the following item

ICAP_AUTOMATICCOLORENABLED n/a FALSE

Page A-35

• Add the following item

ICAP_ICCPROFILE n/a No default

Errata Document for the TWAIN 2.1 Specification 57
TWAIN Working Group

Internationalization

Add the Internationalization content from the TWAIN 2.0 Specification as an Appendix in the TWAIN 2.2
specification.

Internationalization
A TWAIN Source can easily be internationalized despite its 8-bit character interface. A well designed
Source should automatically match the locale of the application calling it; passing localized data through the
API, and displaying appropriate language text in its user interface. Developers have the option of using
UNICODE or MultiByte encodings, the 8-bit interface is not an obstacle to Applications or Sources.

When an Application calls DG_CONTROL / DAT_IDENTITY / MSG_OPENDS, it provides to the Source its
TW_IDENTITY data. Internationalized Sources should check the appIdentity->Version.Language field, and
attempt to match the Application’s language (returning the same value in the dsIdentity structure). If the
Source is incapable of matching the language, then it should attempt to match the User’s current locale (on
Win32 do this using the LOCALE_USER_DEFAULT value returned by the GetLocaleInfo() call). In most
cases the Application locale and the User locale will be the same, and the Source will have to select the best
language it can. For instance, if the Application requested Swiss French, and the Source only has French,
then it should offer that. Otherwise, it should resort to some common secondary language, such as English.

Please note that DG_CONTROL / DAT_IDENTITY / MSG_OPENDS is the very first opportunity that an
Application and Source have to negotiate language. DG_CONTROL / DAT_IDENTITY / MSG_GET, when
invoked in state 3, does not provide an appIdentity. Sources should default to the LOCALE_USER_DEFAULT
in this instance.

As mentioned above, the TWAIN interface assumes 8-bit characters, this prevents the direct passing of
UNICODE data between Sources and Applications, but it does not hinder indirect means that convert data
into MultiByte encodings. The remainder of this section shows one way of allowing Sources and
Applications to communicate, without worrying about whether they are UNICODE or MultiByte enabled.
The best example to illustrate this is to consider a Source and Application, both UNICODE enabled,
communicating through the TWAIN interface.

To pass UNICODE string data from the Source to the Application, the Source must convert UNICODE to
MultiByte, using the appropriate Code-Page (which is specific to a given set of locales). When the
Application receives the data, it converts from MultiByte back to UNICODE.

The process is the same when sending string data from the Application to the Source. The process depends
on the Application and Source using the same Code-Page for their conversion. The Win32 functions
required to perform the conversions are WideCharToMultiByte and MultiByteToWideChar. The only
limitation to watch out for is the size of the various strings provided by TWAIN. At all times the MultiByte
data must fit within the strings described by the interface, and Source and Application writers need to pay
close attention to it.

int WideCharToMultiByte(

UINT CodePage, // code page

DWORD dwFlags, // performance and mapping flags

LPCWSTR lpWideCharStr, // address of wide-character string

int cchWideChar, // number of characters in string

LPSTR lpMultiByteStr, // address of buffer for new string

int cchMultiByte, // size of buffer

Errata Document for the TWAIN 2.1 Specification 58
TWAIN Working Group

LPCSTR lpDefaultChar, // address of default for unmappable characters

LPBOOL lpUsedDefaultChar // address of flag set when default char. used

);

int MultiByteToWideChar(

UINT CodePage, // code page

DWORD dwFlags, // character-type options

LPCSTR lpMultiByteStr , // address of string to map

int cchMultiByte, // number of characters in string

LPWSTR lpWideCharStr , // address of wide-character buffer

int cchWideChar // size of buffer

);

These functions are fully described in the online Microsoft Visual C++ documentation. This section does not
attempt to duplicate that information, but does show how Source and Application may cooperate when
using them to transmit localized data through the TWAIN interface.

TWAIN CAP_LANGUAGE Code to ANSI Code-Page Table
// This array maps TWAIN CAP_LANGUAGE codes to the appropriate ANSI Code-

// Page. There is no mechanism for converting to the OEM Code-Page, nor

// should one be needed, since the upper 128 bytes in the OEM pages mostly

// contain line art characters used by MS-DOS.

// Note: the index in the comment field is just an index into the array,

// it does not correspond to the TWAIN constant for a given TWLG field…

//

#define AnsiCodePageElements 88

int AnsiCodePage[AnsiCodePageElements] = {

1252, // 0 TWLG_DANISH (TWLG_DAN)

1252, // 1 TWLG_DUTCH (TWLG_DUT)

1252, // 2 TWLG_ENGLISH (TWLG_ENG)

1252, // 3 TWLG_FRENCH_CANADIAN (TWLG_FCF)

1252, // 4 TWLG_FINNISH (TWLG_FIN)

1252, // 5 TWLG_FRENCH (TWLG_FRN)

1252, // 6 TWLG_GERMAN (TWLG_GER)

1252, // 7 TWLG_ICELANDIC (TWLG_ICE)

1252, // 8 TWLG_ITALIAN (TWLG_ITN)

1252, // 9 TWLG_NORWEGIAN (TWLG_NOR)

1250, // 10 TWLG_PORTUGUESE (TWLG_POR)

1252, // 11 TWLG_SPANISH (TWLG_SPA)

1252, // 12 TWLG_SWEDISH (TWLG_SWE)

1252, // 13 TWLG_ENGLISH_USA (TWLG_USA)

1252, // 14 TWLG_AFRIKAANS

1250, // 15 TWLG_ALBANIA

Errata Document for the TWAIN 2.1 Specification 59
TWAIN Working Group

1256, // 16 TWLG_ARABIC

1256, // 17 TWLG_ARABIC_ALGERIA

1256, // 18 TWLG_ARABIC_BAHRAIN

1256, // 19 TWLG_ARABIC_EGYPT

1256, // 20 TWLG_ARABIC_IRAQ

1256, // 21 TWLG_ARABIC_JORDAN

1256, // 22 TWLG_ARABIC_KUWAIT

1256, // 23 TWLG_ARABIC_LEBANON

1256, // 24 TWLG_ARABIC_LIBYA

1256, // 25 TWLG_ARABIC_MOROCCO

1256, // 26 TWLG_ARABIC_OMAN

1256, // 27 TWLG_ARABIC_QATAR

1256, // 28 TWLG_ARABIC_SAUDIARABIA

1256, // 29 TWLG_ARABIC_SYRIA

1256, // 30 TWLG_ARABIC_TUNISIA

1256, // 31 TWLG_ARABIC_UAE /* United Arabic Emirates */

1256, // 32 TWLG_ARABIC_YEMEN

1252, // 33 TWLG_BASQUE

1251, // 34 TWLG_BYELORUSSIAN

1251, // 35 TWLG_BULGARIAN

1252, // 36 TWLG_CATALAN

936, // 37 TWLG_CHINESE

950, // 38 TWLG_CHINESE_HONGKONG

936, // 39 TWLG_CHINESE_PRC /* People's Republic of China */

936, // 40 TWLG_CHINESE_SINGAPORE

936, // 41 TWLG_CHINESE_SIMPLIFIED

950, // 42 TWLG_CHINESE_TAIWAN

950, // 43 TWLG_CHINESE_TRADITIONAL

1250, // 44 TWLG_CROATIA

1250, // 45 TWLG_CZECH

1252, // 46 TWLG_DUTCH_BELGIAN

1252, // 47 TWLG_ENGLISH_AUSTRALIAN

1252, // 48 TWLG_ENGLISH_CANADIAN

1252, // 49 TWLG_ENGLISH_IRELAND

1252, // 50 TWLG_ENGLISH_NEWZEALAND

1252, // 51 TWLG_ENGLISH_SOUTHAFRICA

1252, // 52 TWLG_ENGLISH_UK

1257, // 53 TWLG_ESTONIAN

1250, // 54 TWLG_FAEROESE

1256, // 55 TWLG_FARSI

1252, // 56 TWLG_FRENCH_BELGIAN

1252, // 57 TWLG_FRENCH_LUXEMBOURG

Errata Document for the TWAIN 2.1 Specification 60
TWAIN Working Group

1252, // 58 TWLG_FRENCH_SWISS

1252, // 59 TWLG_GERMAN_AUSTRIAN

1252, // 60 TWLG_GERMAN_LUXEMBOURG

1252, // 61 TWLG_GERMAN_LIECHTENSTEIN

1252, // 62 TWLG_GERMAN_SWISS

1253, // 63 TWLG_GREEK

1255, // 64 TWLG_HEBREW

1250, // 65 TWLG_HUNGARIAN

1252, // 66 TWLG_INDONESIAN

1252, // 67 TWLG_ITALIAN_SWISS

932, // 68 TWLG_JAPANESE

949, // 69 TWLG_KOREAN

1361, // 70 TWLG_KOREAN_JOHAB

1257, // 71 TWLG_LATVIAN

1257, // 72 TWLG_LITHUANIAN

1252, // 73 TWLG_NORWEGIAN_BOKMAL

1252, // 74 TWLG_NORWEGIAN_NYNORSK

1250, // 75 TWLG_POLISH

1252, // 76 TWLG_PORTUGUESE_BRAZIL

1250, // 77 TWLG_ROMANIAN

1251, // 78 TWLG_RUSSIAN

1250, // 79 TWLG_SERBIAN_LATIN

1250, // 80 TWLG_SLOVAK

1250, // 81 TWLG_SLOVENIAN

1252, // 82 TWLG_SPANISH_MEXICAN

1252, // 83 TWLG_SPANISH_MODERN

874, // 84 TWLG_THAI

1254, // 85 TWLG_TURKISH

1251, // 86 TWLG_UKRANIAN

};

Sample Converting from WideChar to MultiByte

The following is a sample of converting from WideChar to MultiByte.
// This function converts _TCHAR* strings to MultiByte, using the

// appropriate code page. If the build is ANSI or MBCS, then no

// conversion is needed, the _tcsncpy() function is used.

// If the build is UNICODE, then the Code-Page is determined, and used to

// convert the string to MultiByte using the WideCharToMultiByte()

// function…

//

int CopyTCharToMultibyte

(char *dst,

const int sizeof_dst,

Errata Document for the TWAIN 2.1 Specification 61
TWAIN Working Group

const _TCHAR *src,

const int twain_language_code)

{

#ifndef _UNICODE

// MultiByte string copy…

_tcsncpy(dst,src,sizeof_dst);

dst[sizeof_dst-1] = 0;

return(strlen(dst));

#else

int cp;

int len;

_TCHAR cp_str[16];

if (twain_language_code >= AnsiCodePageElements) {

// Whoops, don’t have one of those…

return(-1);

} else if (twain_language_code >= 0) {

// Lookup the code page…

cp = AnsiCodePage[twain_language_code];

} else {

// Get the User’s code page…

GetLocaleInfo

(LOCALE_USER_DEFAULT,

LOCALE_IDEFAULTANSICODEPAGE,

cp_str,

sizeof(cp_str));

cp = _ttoi(cp_str);

}

if (IsValidCodePage(cp) == 0) {

// That code page isn’t installed on this system…

return(-1);

}

len = WideCharToMultiByte(

cp, // code page

0, // performance and mapping flags

src, // address of wide-character string

-1, // number of characters in string

dst, // address of buffer for new string

sizeof_dst, // size of buffer (in characters)

NULL, // address of default for unmappable characters

NULL // address of flag set when default char. used

);

#endif

Errata Document for the TWAIN 2.1 Specification 62
TWAIN Working Group

}

Sample Converting from MultiByte to WideChar

The following is a sample of converting from MuliByte to WideChar.
// This function converts multibyte strings to _TCHAR* strings, using

// the appropriate code page.

// If the build is ANSI or MBCS, then no conversion is needed, the

// _tcsncpy() function is used. If the build is UNICODE, then the

// Code-Page is determined, and used to convert the string to

// _TCHAR* using the MultiByteToWideChar() function…

//

int CopyMultibyteToTChar

(_TCHAR *dst,

const int sizeof_dst,

const char *src,

const int twain_language_code)

{

#ifndef _UNICODE

// MultiByte string copy…

_tcsncpy(dst,src,sizeof_dst);

dst[sizeof_dst-1] = 0;

return(strlen(dst));

#else

int cp;

int len;

_TCHAR cp_str[16];

if (twain_language_code >= AnsiCodePageElements) {

// Whoops, don’t have one of those…

return(-1);

} else if (twain_language_code >= 0) {

// Lookup the code page…

cp = AnsiCodePage[twain_language_code];

} else {

// Get the User’s code page…

GetLocaleInfo

 (LOCALE_USER_DEFAULT,

LOCALE_IDEFAULTANSICODEPAGE,

cp_str,

sizeof(cp_str));

cp = _ttoi(cp_str);

}

if (IsValidCodePage(cp) == 0) {

// That code page isn’t installed on this system…

Errata Document for the TWAIN 2.1 Specification 63
TWAIN Working Group

return(-1);

}

len = MultiByteToWideChar(

cp, // code page

0, // performance and mapping flags

src, // address of wide-character string

-1, // number of characters in string

dst, // address of buffer for new string

sizeof_dst/sizeof(_TCHAR) // size of buffer (in characters)

);

return(len);

#endif

}

Sample Use of the Conversion Functions

The following are examples of UNICODE application and UNICODE source.

UNICODE Application
int sts;

int twain_language_code;

_TCHAR Author[128];

pTW_ONEVALUE pvalOneValue;

. . .

// the Application has queried the Source as to what languages it supports

//and selected TWLG_JAPANESE, storing it in twain_language_code…

. . .

// CAP_AUTHOR is queried, and a value is received…

. . .

// Convert CAP_AUTHOR string to UNICODE…

sts = CopyMultiByteToTChar

(Author,

sizeof(Author),

(char*)&pvalOneValue->Item,

twain_language_code)

if (sts < 0) {

// Error…

. . .

}

UNICODE Source
. . .

int sts;

int source_language_code;

_TCHAR SourceAuthor[128];

Errata Document for the TWAIN 2.1 Specification 64
TWAIN Working Group

pTW_ONEVALUE pvalOneValue;

. . .

// the Source has been told to use TWLG_JAPANESE, it stores this value

// in source_language_code …

. . .

// CAP_AUTHOR is queried by the Application…

// The Source keeps the value in SourceAuthor…

. . .

// Convert CAP_AUTHOR string to multibyte…

sts = CopyTCharToMultibyte

((char*)&pvalOneValue->Item,

sizeof(TW_STR128),

SourceAuthor,

source_language_code)

if (sts < 0) {

// Error…

. . .

}

. . .

// The Source returns the value to the Application…

Errata Document for the TWAIN 2.1 Specification 65
TWAIN Working Group

The ImageData and Its Layout

Pages 4-24 to 4-25 (PDF page 98-99)

The image which is transferred from the Source to the application has several attributes. Some
attributes describe the size of the image. Some describe where the image was located on the scanner.
Still others might describe information such as resolution or number of bits per pixel. TWAIN provides
means for the application to learn about these attributes. Users are often able to select and modify an
image’s attributes through the Source’s user interface. Additionally, TWAIN provides capabilities and
operations that allow the application to impact these attributes prior to acquisition and transfer.

Getting Information About the Image That will be Transferred
Before the transfer occurs, while in State 6, the Source can provide information to the application about
the actual image that it is about to transfer. Note, the information is lost once the transfer takes place so
the application should save it, if needed. This information can be retrieved through two operations:

• DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
• DG_IMAGE / DAT_IMAGEINFO / MSG_GET

The area of an image to be acquired will always be a rectangle called a frame. There may be one or
more frames located on a page. Frames can be selected by the user or designated by the application. The
TW_IMAGELAYOUT structure communicates where the image was located on the original page relative
to the origin of the scanner. It also indicates, in its FrameNumber field, if this is the first frame, or a later
frame, to be acquired from the page.

The TW_IMAGELAYOUT structure looks like this:
typedef struct {

TW_FRAME Frame;
TW_UINT32 DocumentNumber;
TW_UINT32 PageNumber;
TW_UINT32 FrameNumber;

} TW_IMAGELAYOUT, FAR *pTW_IMAGELAYOUT;
The TW_FRAME structure specifies the values for the Left, Right, Top, and Bottom of the frame to be
acquired based on the origin of the scanner. Values are given in ICAP_UNITS.

Update image to have “Origin of Scanner”

Figure 4-1. TW_FRAME Structure

Errata Document for the TWAIN 2.1 Specification 66
TWAIN Working Group

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation communicates other attributes of the image
being transferred. The TW_IMAGEINFO structure looks like this:

typedef struct {
TW_FIX32 XResolution;
TW_FIX32 YResolution;
TW_INT32 ImageWidth;
TW_INT32 ImageLength;
TW_INT16 SamplesPerPixel;
TW_INT16 BitsPerSample[8];
TW_INT16 BitsPerPixel;
TW_BOOL Planar;
TW_INT16 PixelType;
TW_UINT16 Compression;

} TW_IMAGEINFO, FAR * pTW_IMAGEINFO;
The ImageWidth and ImageLength relate to the frame described by the TW_IMAGELAYOUT structure
after ICAP_ROTATION is taken into account.

 Pages 4-26
ImageWidth TW_IMAGELAYOUT.TW_FRAME.Right - TW_FRAME.Left **
ImageLength TW_IMAGELAYOUT.TW_FRAME.Bottom - TW_FRAME.Top **

**ImageWidth and ImageLength are actually provided in pixels whereas TW_FRAME uses

ICAP_UNITS. If ICAP_ROTATION is 90 or -90 then ImageWidth and ImageLength are exchanged.

Note: Frame extents are only limited by ICAP_PHYSICALWIDTH and ICAP_PHYSICALHEIGHT.
Setting ICAP_SUPPORTEDSIZES does NOT imply a new extent limitation. TWSS_xxxx sizes
combined with ICAP_ORIENTATION are simply predefined fixed frame sizes.

• If the frame is set in DAT_IMAGELAYOUT

• ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the frame set in
the DAT_IMAGELAYOUT call.
• ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current frame is set from ICAP_FRAMES
• DAT_IMAGELAYOUT shall respond with the dimensions of the current frame set in
ICAP_FRAMES
• ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current fixed frame is set from ICAP_SUPPORTEDSIZES
• DAT_IMAGELAYOUT shall respond to MSG_GET with the dimensions of the fixed frame
specified in ICAP_SUPPORTEDSIZES combined with ICAP_ORIENTATION.
• ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the fixed frame
specified in ICAP_SUPPORTEDSIZES combined with ICAP_ORIENTATION.

ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOUT,
DAT_IMAGEINFO

There is considerable confusion when trying to resolve the affect of Rotation and Orientation on the
current frames and image layout. After careful consideration of the specification it has been concluded
that ICAP_ROTATION and ICAP_ORIENTATION shall be applied after considering ICAP_FRAMES
and DAT_IMAGELAYOUT.

Obviously a change in orientation will have an effect on the output image dimensions, so these must be
reflected in DAT_IMAGEINFO during State 6. The resulting image dimensions shall be reported by the
data source after considering the affect of the rotation on the current frame.

Errata Document for the TWAIN 2.1 Specification 67
TWAIN Working Group

ICAP_ORIENTATION shall be reflected in returned ICAP_FRAMES and DAT_IMAGELAYOUT when set
using ICAP_SUPPORTEDSIZES other than TWSS_NONE or TWSS_MAXSIZE.
ICAP_ROTATION shall only be reflected in the returned image data of DAT_IMAGEINFO.

ICAP_ORIENTATION and ICAP_ROTATION are additive. The original SupportedSize is modified by
ICAP_ORIENTATION as it is downloaded to the device by the Source, and represents the orientation of
the paper being scanned. ICAP_ROTATION is then applied to the captured image to yield the final
framing information that is reported to the Application in State 6 or 7. One possible reason for
combining these two values is to use them to cancel each other out. For instance, some scanners with
automatic document feeders may receive a performance benefit from describing an
ICAP_ORIENTATION of TWOR_LANDSCAPE in combination with an ICAP_ROTATION of 90 degrees.
This would allow the user to feed images in a landscape orientation (which lets them feed faster), while
rotating the captured images back to portrait (which is the way the user wants to view them).

Errata Document for the TWAIN 2.1 Specification 68
TWAIN Working Group

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Pages 7-122 (PDF page 270)

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image on
the acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a
photograph, etc.).

The MSG_GET operation describes both the size and placement of the image on the scanner.
The coordinates on the image and the extents of the image are expressed in the units of
measurement currently negotiated for ICAP_UNITS (default is inches).

The outline of the image is expressed by a “frame.” The Left, Top, Right, and Bottom edges of
the frame are stored in pImageLayout->Frame. These values place the frame within the
scanner. All measurements are relative to the scanner’s “upper-left” corner. Define “upper-left”
by how the image would appear on the computer’s screen before any rotation or other position
transform is applied to the image data. This origin point will be apparent for most Sources
(although folks working with satellites or radio telescopes may be at a bit of a loss).

Finally pImageLayout optionally includes information about which frame on the page, which
page within a document, and which document the image belongs to. These fields were included
mostly for future versions which could merge more than one type of data. A more immediate
use might be for an application that needs to keep track of which frame on the page an image
came from while acquiring from a Source that can supply more than one image from the same
page at the same time. The information in this structure always describes the current image. To
set multiple frames for any page simultaneously, reference ICAP_FRAMES.

Errata Document for the TWAIN 2.1 Specification 69
TWAIN Working Group

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Pages 7-126 (PDF page 274)

Application

Fill in all fields of pImageLayout. Especially important is the Frame field whose values are
expressed in ICAP_UNITS. If the application doesn’t care about one or more of the other fields,
be sure to set them to -1 to prevent confusion. If the application only cares about the extents of
the Frame, and not about the origin on the page, set the Frame.Top and Frame.Left to
zero. Otherwise, the application can specify the location on the scanner where the Source
should begin acquiring the image, in addition to the extents of the acquired image.

Source
Use the values in pImageLayout as the Source’s current image layout information. If you are
unable to set the device exactly to the values requested in the Frame field, set them as closely as
possible, always snapping to a value that will result in a larger frame, and return
TWRC_CHECKSTATUS to the application.

If the application sets Frame.Top and Frame.Left to zero, then the Source should set the
frame taking into consideration the default alignment set through CAP_FEEDERALIGNMENT.

If the application has set Frame.Top and Frame.Left to a non-zero value , set the origin for
the image to be acquired accordingly. If possible, the Source should consider reflecting these
settings in the user interface when it is raised. For instance, if your Source presents a pre-scan
image, consider showing the selection region in the proper location and with the proper size
suggested by the settings from this operation.

If the requested values exceed the maximum size the Source can acquire, set the
pImageLayout->Frame values used within the Source to the largest extent possible within
the axis of the offending value. Return TWRC_FAILURE with TWCC_BADVALUE.

Errata Document for the TWAIN 2.1 Specification 70
TWAIN Working Group

TW_FRAME

Pages 8-33 (PDF page 331)

• Replace image with one that uses origin of scanner.

Errata Document for the TWAIN 2.1 Specification 71
TWAIN Working Group

TW_IMAGELAYOUT

Pages 8-40 (PDF page 338)

Description

Involves information about the original size of the acquired image and its position on the
scanner relative to the scanner’s upper-left corner. Default measurements are in inches (units of
measure can be changed by negotiating the ICAP_UNITS capability). This information may be
used by the application to relate the acquired (and perhaps processed image) to the original.
Further, the application can, using this structure, set the size of the image it wants acquired.

Field Descriptions
Frame Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS) of the

rectangle enclosing the original image on the scanner. If the application isn’t
interested in setting the origin of the image, set both Top and Left to zero. The Source
will fill in the actual values following the acquisition. See also TW_FRAME.

Errata Document for the TWAIN 2.1 Specification 72
TWAIN Working Group

TWMF_DSOWNS

Pages 7-116 (PDF page 264)

Source

Allocates the TheMem member and sets the Flags member to have TWFM_DSOWNS
TWMF_DSOWNS. Fills in the Length member.

It is recommended that sources obey platform specific rules about locations for profile files.
When possible, it is desirable to store the profiles in the platform specific location and then to
read that profile and send the data back to the location.

Errata Document for the TWAIN 2.1 Specification 73
TWAIN Working Group

NativeTransfer

Pages 3-30 (PDF page 62)
pData
Points to a TW_UINT32 TW_HANDLE variable. This is an exception from the typical pattern.

Pages 6-6 (PDF page 146)

Data Type Used by Associated structure or type

DAT_IMAGENATIVEXFER

....

DG_IMAGE

...

TW_UINT32;TW_HANDLE
On Windows - low word=DIB handle
On Macintosh - PicHandle
...

Pages 7-134 (PDF page 282)
pHandle = A pointer to a variable of type TW_UINT32TW_HANDLE.

Windows - This 32 bit integer is a handle variable to a DIB (Device Independent Bitmap) located
in memory.

Macintosh - This 32-bit integer is a handle to a Picture (a PicHandle). It is a QuickDraw
picture located in memory.

Pages 7-135 (PDF page 283)
Source

Allocate a single block of memory to hold the image data and write the image data into it using
the appropriate format for the operating environment. The source must assure that the
allocated block will be accessible to the application. Place the handle of the allocated block in
the TW_UINT32TW_HANDLE pointed to by pHandle.

Pages 8-63 (PDF page 361)
DAT_IMAGENATIVEXFER

Uses a TW_UINT32TW_HANDLE variable.

Errata Document for the TWAIN 2.1 Specification 74
TWAIN Working Group

Wrong Capability IDs

Pages 8-74 (PDF page 372)

Version Constant Numeric ID

 CAP_CUSTOMBASE
CAP_XFERCOUNT
ICAP_COMPRESSION
ICAP_PIXELTYPE
ICAP_UNITS
ICAP_XFERMECH
...

0x8000
0x0001
0x01010x0100
0x01020x0101
0x01030x0102
0x01040x0103
...

Pages 8-76 (PDF page 374)

Version Constant Numeric ID

 ...
CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX
CAP_LANGUAGE
CAP_FEEDERALIGNMENT
CAP_FEEDERORDER
...

...
0x10240x1026
0x10260x1027
0x10270x1028
0x10280x1029
0x10290x102A
0x102A0x102B
0x102B0x102C
0x102C0x102D
0x102D0x102E
...

Pages 8-78 (PDF page 376)

Version Constant Numeric ID

 ...
ICAP_BITDEPTH
ICAP_UNDEFINEDIMAGESIZE
ICAP_IMAGEDATASET
ICAP_EXTIMAGEINFO
ICAP_MINUMUMHEIGHT
ICAP_MINIMUMWIDTH
ICAP_FLIPROTATION
ICAP_AUTODISCARDBLANKPAGES
ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES

...
0x112B
0x112C
0x112D
0x112E
0x112F
0x1130
0x1131
0x1134
0x1136
0x1137
0x1138
0x1139

Errata Document for the TWAIN 2.1 Specification 75
TWAIN Working Group

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
ICAP_ZOOMFACTOR
ICAP_BITDEPTHREDUCTION
ICAP_BITDEPTHREDUCTION
ICAP_UNDEFINEDIMAGESIZE
ICAP_IMAGEDATASET
ICAP_EXTIMAGEINFO
ICAP_MINIMUMHEIGHT
ICAP_MINIMUMWIDTH
ICAP_AUTODISCARDBLANKPAGES
ICAP_FLIPROTATION
ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
ICAP_ZOOMFACTOR
ICAP_PATCHCODEDETECTIONENABLED
...

0x113A
0x113B
0x113C
0x113D
0x113E
0x112C
0x112D
0x112E
0x112F
0x1130
0x1131
0x1134
0x1136
0x1137
0x1138
0x1139
0x113A
0x113B
0x113C
0x113D
0x113E
0x113F
...

Errata Document for the TWAIN 2.1 Specification 76
TWAIN Working Group

Wrong Names

Pages 8-75 (PDF page 373)

Version Constant Numeric ID

 ...
CAP_UICONTROLABLE CAP_UICONTROLLABLE
...

...
0x100E
...

Pages 8-75 (PDF page 373)

Version Constant Numeric ID

 ...
CAP_DUPLEXENALBED CAP_DUPLEXENABLED
...

...
0x1013
...

Pages 8-75 (PDF page 373)

Version Constant Numeric ID

 ...
CAP_CUSTOMEDSDATAD CAP_CUSTOMDSDATA
...

...
0x1015
...

Pages 8-76 (PDF page 374)

Version Constant Numeric ID

 ...
CAP_DEVICEDATETIME CAP_DEVICETIMEDATE
...

...
0x101F
...

Pages 8-78 (PDF page 376)

Version Constant Numeric ID

 ...
ICAP_PATCHCODEMAXSEARCHPRIORITIEICAP_PATCHCODEMAX
SEARCHPRIORITIES
...

...
0x1141
...

Pages 8-90 (PDF page 388)

Errata Document for the TWAIN 2.1 Specification 77
TWAIN Working Group

Version Constant Numeric ID

 ...
TWSS_C10
TWSS_USEXECUTIVETWSS_USSTATEMENT
TWSS_BUSINESSCARD

TWSS_MAXSIZE

...
51
52
53

54

Errata Document for the TWAIN 2.1 Specification 78
TWAIN Working Group

Missing File Format description
Page 10-144 Update Description section with text in red :

TWFF_DEJAVU A file format from LizardTech.
TWFF_PDFA A file format from Adobe PDF/A, Version 1.
TWFF_PDFA2 A file format from Adobe PDF/A, Version 2.

Errata Document for the TWAIN 2.1 Specification 79
TWAIN Working Group

Missing constants

Pages 8-70 (PDF page 368)

Version Constant Numeric ID

 ...
MSG_PASSTHRU
MSG_REGISTER_CALLBACK

MSG_RESETALL

...
0x0901
0x0902

0x0A01

Pages 8-68 (PDF page 366)

Data Groups (DG_) Numeric ID

DG_CONTROL
DG_IMAGE
DG_AUDIO
DG_MASK

0x0001L
0x0002L
0x0004L
0xFFFFL

Add this section on page 8-68 (366) :
Triplet Constants

Data Flags (DF_)

Note: These are bits in a mask.

Data Flags (DF_) Numeric ID

DF_DSM2
DF_APP2
DF_DS2

0x10000000L
0x20000000L
0x40000000L

Errata Document for the TWAIN 2.1 Specification 80
TWAIN Working Group

Wrong constants

Pages 8-70 (PDF page 368)

Version Constant Numeric ID

 ...
MSG_ENDXFER
MSG_STOPFEEDER

...

...
0x0701
0x07010x0702

...

