添加 同态加密算法 Paillier

This commit is contained in:
Looly 2023-06-09 17:49:23 +08:00
parent 84621a71e8
commit c3a05d5159
8 changed files with 150 additions and 78 deletions

View File

@ -2,13 +2,14 @@
# 🚀Changelog
-------------------------------------------------------------------------------------------------------------
# 5.8.20(2023-06-06)
# 5.8.20(2023-06-09)
### 🐣新特性
* 【core 】 UrlQuery增加setStrict方法区分是否严格模式issue#I78PB1@Gitee
* 【poi 】 添加系列方法writeCol以支持按列输出pr#1003@Gitee
* 【core 】 CollUtil新增anyMatch和allMatch方法pr#1008@Gitee
* 【core 】 CsvWriter如果开启了append=true默认自动开启endingLineBreak=truepr#1010@Gitee
* 【crypto】 CsvWriter如果开启了append=true默认自动开启endingLineBreak=truepr#1010@Gitee
### 🐞Bug修复
* 【core 】 修复TreeUtil.getParentsName()获取到的路径集合中存在值为null的路径名称问题issue#I795IN@Gitee

View File

@ -1,30 +0,0 @@
package cn.hutool.crypto.asymmetric;
import java.math.BigInteger;
/** 存放Paillier 公钥
*
* @author Revers.
**/
public class PaillierpublicKey{
private BigInteger n;
private BigInteger g;
public PaillierpublicKey(BigInteger n, BigInteger g) {
if (n == null) {
throw new NullPointerException("n is null");
}
if (g == null) {
throw new NullPointerException("g is null");
}
this.n = n;
this.g = g;
}
public BigInteger getN() {
return n;
}
public BigInteger getG() {
return g;
}
}

View File

@ -1,4 +1,16 @@
package cn.hutool.crypto.asymmetric;
/*
* Copyright (c) 2023 looly(loolly@aliyun.com)
* Hutool is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
package cn.hutool.crypto.asymmetric.paillier;
import cn.hutool.core.util.HexUtil;
@ -8,16 +20,16 @@ import java.util.Random;
/**
* 同态加密算法Paillier
*
* <p>
* 加法同态存在有效算法+E(x+y)=E(x)+E(y)或者 x+y=D(E(x)+E(y))成立并且不泄漏 x y
* 乘法同态存在有效算法*E(x×y)=E(x)*E(y)或者 xy=D(E(x)*E(y))成立并且不泄漏 x y
*
* <p>
* 方案安全性可以归约到判定性合数剩余假设Decisional Composite Residuosity Assumption, DCRA即给定一个合数n和整数z判定z是否在n^2下是否是n次剩余是困难的
* 这个假设经过了几十年的充分研究到目前为止还没有多项式时间的算法可以攻破所以Paillier加密方案的安全性被认为相当可靠
*
* <p>
* 字符串文本加解密相互配对,此时无法使用同态加法和同态乘法
* 数值类型不可使用字符串加解密
*
* <p>
* 公钥加密和同态加法/同态乘法运算
* 私钥解密
*
@ -27,14 +39,14 @@ public class Paillier {
//公钥 n g
//私钥 n lambda u
private static int bitLength = 2048;
private static int certainty = 256;
private static final int bitLength = 2048;
private static final int certainty = 256;
/**
* 生成密钥算法默认
* @return PaillierKeyPair 公钥私钥对
*/
public static final PaillierKeyPair generateKey() {
public static PaillierKeyPair generateKey() {
return generateKey(bitLength,certainty);
}
@ -45,19 +57,18 @@ public class Paillier {
* @param certainty 此构造函数的执行时间与此参数的值成比例
* @return PaillierKeyPair 公钥私钥对
*/
public static final PaillierKeyPair generateKey(int bitLength,int certainty) {
BigInteger p =new BigInteger(bitLength / 2, certainty, new SecureRandom());
BigInteger q =new BigInteger(bitLength / 2, certainty, new SecureRandom());
BigInteger n = p.multiply(q);
BigInteger nSquare = n.multiply(n);
BigInteger lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
public static PaillierKeyPair generateKey(final int bitLength, final int certainty) {
final BigInteger p =new BigInteger(bitLength / 2, certainty, new SecureRandom());
final BigInteger q =new BigInteger(bitLength / 2, certainty, new SecureRandom());
final BigInteger n = p.multiply(q);
final BigInteger nSquare = n.multiply(n);
final BigInteger lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
.divide(p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE)));
BigInteger g = n.add(BigInteger.ONE);
BigInteger u = g.modPow(lambda, nSquare).subtract(BigInteger.ONE).divide(n).modInverse(n);
PaillierpublicKey publicKey = new PaillierpublicKey(n,g);
PaillierPrivateKey privateKey = new PaillierPrivateKey(n, lambda,u);
PaillierKeyPair keyPair = new PaillierKeyPair(publicKey,privateKey);
return keyPair;
final BigInteger g = n.add(BigInteger.ONE);
final BigInteger u = g.modPow(lambda, nSquare).subtract(BigInteger.ONE).divide(n).modInverse(n);
final PaillierpublicKey publicKey = new PaillierpublicKey(n,g);
final PaillierPrivateKey privateKey = new PaillierPrivateKey(n, lambda,u);
return new PaillierKeyPair(publicKey,privateKey);
}
/**
@ -69,10 +80,10 @@ public class Paillier {
*
* @return byte[]密文
*/
public static final byte[] encryptString(String text, PaillierpublicKey publicKey) {
BigInteger r = new BigInteger(bitLength, new Random());
BigInteger n = publicKey.getN();
BigInteger nsquare = n.multiply(n);
public static byte[] encryptString(final String text, final PaillierpublicKey publicKey) {
final BigInteger r = new BigInteger(bitLength, new Random());
final BigInteger n = publicKey.getN();
final BigInteger nsquare = n.multiply(n);
return publicKey.getG().modPow( new BigInteger(HexUtil.encodeHexStr(text),16), nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare).toByteArray();
}
@ -83,12 +94,12 @@ public class Paillier {
* @param privateKey 私钥
* @return 解密的明文
*/
public static final String decryptString(byte[] ciphertext, PaillierPrivateKey privateKey) {
BigInteger n = privateKey.getN();
BigInteger lambda = privateKey.getLambda();
BigInteger u = privateKey.getu();
BigInteger nsquare = n.multiply(n);
String s = new BigInteger(ciphertext).modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n).toString();
public static String decryptString(final byte[] ciphertext, final PaillierPrivateKey privateKey) {
final BigInteger n = privateKey.getN();
final BigInteger lambda = privateKey.getLambda();
final BigInteger u = privateKey.getu();
final BigInteger nsquare = n.multiply(n);
final String s = new BigInteger(ciphertext).modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n).toString();
return HexUtil.decodeHexStr(new BigInteger(s).toString(16));
}
@ -99,10 +110,10 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] encrypt(BigInteger text, PaillierpublicKey publicKey) {
BigInteger r = new BigInteger(bitLength, new Random());
BigInteger n = publicKey.getN();
BigInteger nsquare = n.multiply(n);
public static byte[] encrypt(final BigInteger text, final PaillierpublicKey publicKey) {
final BigInteger r = new BigInteger(bitLength, new Random());
final BigInteger n = publicKey.getN();
final BigInteger nsquare = n.multiply(n);
return publicKey.getG().modPow(text, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare).toByteArray();
}
@ -113,11 +124,11 @@ public class Paillier {
* @param privateKey 私钥
* @return 解密的明文
*/
public static final String decrypt(byte[] ciphertext, PaillierPrivateKey privateKey) {
BigInteger n = privateKey.getN();
BigInteger lambda = privateKey.getLambda();
BigInteger u = privateKey.getu();
BigInteger nsquare = n.multiply(n);
public static String decrypt(final byte[] ciphertext, final PaillierPrivateKey privateKey) {
final BigInteger n = privateKey.getN();
final BigInteger lambda = privateKey.getLambda();
final BigInteger u = privateKey.getu();
final BigInteger nsquare = n.multiply(n);
return new BigInteger(ciphertext).modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n).toString();
}
@ -129,7 +140,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] add(BigInteger ciphertext,BigInteger ciphertext2,PaillierpublicKey publicKey){
public static byte[] add(final BigInteger ciphertext, final BigInteger ciphertext2, final PaillierpublicKey publicKey){
return ciphertext.add(ciphertext2).multiply(publicKey.getN()).toByteArray();
}
@ -141,7 +152,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] add(String ciphertext,String ciphertext2,PaillierpublicKey publicKey){
public static byte[] add(final String ciphertext, final String ciphertext2, final PaillierpublicKey publicKey){
return new BigInteger(ciphertext).multiply(new BigInteger(ciphertext2)).mod(publicKey.getN().multiply(publicKey.getN())).toByteArray();
}
@ -153,7 +164,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] add(byte[] ciphertext,byte[] ciphertext2,PaillierpublicKey publicKey){
public static byte[] add(final byte[] ciphertext, final byte[] ciphertext2, final PaillierpublicKey publicKey){
return new BigInteger(ciphertext).multiply(new BigInteger(ciphertext2)).mod(publicKey.getN().multiply(publicKey.getN())).toByteArray();
}
@ -165,7 +176,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] multiply(BigInteger ciphertext,BigInteger number,PaillierpublicKey publicKey){
public static byte[] multiply(final BigInteger ciphertext, final BigInteger number, final PaillierpublicKey publicKey){
return ciphertext.modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
}
@ -177,7 +188,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] multiply(String ciphertext,BigInteger number,PaillierpublicKey publicKey){
public static byte[] multiply(final String ciphertext, final BigInteger number, final PaillierpublicKey publicKey){
return new BigInteger(ciphertext).modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
}
@ -189,7 +200,7 @@ public class Paillier {
* @param publicKey 公钥
* @return byte[]密文
*/
public static final byte[] multiply(byte[] ciphertext,BigInteger number,PaillierpublicKey publicKey){
public static byte[] multiply(final byte[] ciphertext, final BigInteger number, final PaillierpublicKey publicKey){
return new BigInteger(ciphertext).modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
}
}

View File

@ -1,4 +1,16 @@
package cn.hutool.crypto.asymmetric;
/*
* Copyright (c) 2023 looly(loolly@aliyun.com)
* Hutool is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
package cn.hutool.crypto.asymmetric.paillier;
/**
* 存放Paillier 公钥私钥对

View File

@ -1,4 +1,16 @@
package cn.hutool.crypto.asymmetric;
/*
* Copyright (c) 2023 looly(loolly@aliyun.com)
* Hutool is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
package cn.hutool.crypto.asymmetric.paillier;
import java.math.BigInteger;

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2023 looly(loolly@aliyun.com)
* Hutool is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
package cn.hutool.crypto.asymmetric.paillier;
import java.math.BigInteger;
/**
* 存放Paillier 公钥
*
* @author Revers.
*/
public class PaillierpublicKey {
private BigInteger n;
private BigInteger g;
public PaillierpublicKey(BigInteger n, BigInteger g) {
if (n == null) {
throw new NullPointerException("n is null");
}
if (g == null) {
throw new NullPointerException("g is null");
}
this.n = n;
this.g = g;
}
public BigInteger getN() {
return n;
}
public BigInteger getG() {
return g;
}
}

View File

@ -0,0 +1,18 @@
/*
* Copyright (c) 2023 looly(loolly@aliyun.com)
* Hutool is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* 同态加密算法 Paillier
*
* @author Revers
*/
package cn.hutool.crypto.asymmetric.paillier;

View File

@ -1,5 +1,9 @@
package cn.hutool.crypto.asymmetric;
import cn.hutool.crypto.asymmetric.paillier.Paillier;
import cn.hutool.crypto.asymmetric.paillier.PaillierKeyPair;
import cn.hutool.crypto.asymmetric.paillier.PaillierPrivateKey;
import cn.hutool.crypto.asymmetric.paillier.PaillierpublicKey;
import org.junit.Test;
import java.math.BigInteger;